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Wavelet Toolbox Product Description
Analyze and synthesize signals and images using wavelets

Wavelet Toolbox™ provides functions and apps for analyzing and synthesizing signals,
images, and data that exhibit regular behavior punctuated with abrupt changes. The
toolbox includes algorithms for continuous wavelet transform (CWT), scalogram, and
wavelet coherence. It also provides algorithms and visualizations for discrete wavelet
analysis, including decimated, nondecimated, dual-tree, and wavelet packet transforms.
In addition, you can extend the toolbox algorithms with custom wavelets.

The toolbox lets you analyze how the frequency content of signals changes over
time and reveals time-varying patterns common in multiple signals. You can
perform multiresolution analysis to extract fine-scale or large-scale features, identify
discontinuities, and detect change points or events that are not visible in the raw
data. You can also use Wavelet Toolbox to efficiently compress data while maintaining
perceptual quality and to denoise signals and images while retaining features that are
often smoothed out by other techniques.

Key Features

• Continuous wavelet transform (CWT), scalogram, and wavelet coherence
• Discrete wavelet analysis including decimated, nondecimated, dual-tree, and wavelet

packet transforms
• Signal and image denoising with scale or interval dependent thresholding
• Compression and reconstruction of signals and images including matching pursuit

algorithms
• Perfect reconstruction filter banks using coiflets, biorthogonal spline, Daubechies, and

Fejer-Korovkin filters
• Lifting method for constructing custom wavelets
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Installing Wavelet Toolbox Software

To install this toolbox on your computer, see the appropriate platform-specific MATLAB®

installation guide. To determine if the Wavelet Toolbox software is already installed on
your system, check for a subfolder named wavelet within the main toolbox folder.

Wavelet Toolbox software can perform signal or image analysis. For indexed images or
truecolor images (represented by m-by-n-by-3 arrays of uint8), all wavelet functions use
floating-point operations. To avoid Out of Memory errors, be sure to allocate enough
memory to process various image sizes.

The memory can be real RAM or can be a combination of RAM and virtual memory. See
your operating system documentation for how to configure virtual memory.

System Recommendations

While not a requirement, we recommend you obtain Signal Processing Toolbox™ and
Image Processing Toolbox™ software to use in conjunction with the Wavelet Toolbox
software. These toolboxes provide complementary functionality that give you maximum
flexibility in analyzing and processing signals and images.

This manual makes no assumption that your computer is running any other MATLAB
toolboxes.

Platform-Specific Details

Some details of the use of the Wavelet Toolbox software may depend on your hardware or
operating system.

Windows Fonts

We recommend you set your operating system to use “Small Fonts.” Set this option
by clicking the Display icon in your desktop's Control Panel (accessible through the
Settings > Control Panel submenu). Select the Configuration option, and then use
the Font Size menu to change to Small Fonts. You'll have to restart Windows® for this
change to take effect.

Fonts for Non-Windows Platforms

We recommend you set your operating system to use standard default fonts.
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However, for all platforms, if you prefer to use large fonts, some of the labels in the
GUI figures may be illegible when using the default display mode of the toolbox. To
change the default mode to accept large fonts, use the wtbxmngr function. (For more
information, see either the wtbxmngr help or its reference page.)

Mouse Compatibility

Wavelet Toolbox software was designed for three distinct types of mouse control.

Left Mouse Button Middle Mouse Button Right Mouse Button

Make selections. Activate
controls.

Display cross-hairs to show
position-dependent information.

Translate plots up and
down, and left and right.

Note The functionality of the middle mouse button and the right mouse button can be
inverted depending on the platform.
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Wavelets: Tools for Sparse Representation
Many signals and images of interest exhibit piecewise smooth behavior punctuated
by transients. Speech signals are characterized by short bursts encoding consonants
followed by steady-state oscillations indicative of vowels. Natural images have edges.
Financial time series exhibit transient behavior, which characterize rapid upturns and
downturns in economic conditions. Unlike the Fourier basis, wavelet bases are adept
at sparsely representing piecewise regular signals and images, which include transient
behavior.

What is a Wavelet?

A wavelet is a waveform of effectively limited duration that has an average value of zero
and nonzero norm.

Compare wavelets with sine waves, which are the basis of Fourier analysis. Sinusoids do
not have limited duration — they extend from minus to plus infinity. While sinusoids are
smooth and predictable, wavelets tend to be irregular and asymmetric.

Fourier analysis consists of breaking up a signal into sine waves of various frequencies.
Similarly, wavelet analysis is the breaking up of a signal into shifted and scaled versions
of the original (or mother) wavelet.

Just looking at pictures of wavelets and sine waves, you can see intuitively that signals
with sharp changes might be better analyzed with an irregular wavelet than with a
smooth sinusoid.

It also makes sense that local features can be described better with wavelets that have
local extent. The following example illustrates this for a simple signal consisting of a sine
wave with a discontinuity.

Localize Discontinuity in Sine Wave

This example shows wavelet analysis can localize a discontinuity in a sine wave.
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Create a 1-Hz sine wave sampled at 100 Hz. The duration of the sine wave is one second.
The sine wave has a discontinuity at  seconds.

t = linspace(0,1,100)';

x = sin(2*pi*t);

x1 = x-0.15;

y = zeros(size(x));

y(1:length(y)/2) = x(1:length(y)/2);

y(length(y)/2+1:end) = x1(length(y)/2+1:end);

stem(t,y,'markerfacecolor',[0 0 1]);

xlabel('Seconds');

ylabel('Amplitude');
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Obtain the nondecimated discrete wavelet transform of the sine wave using the 'sym2'
wavelet and plot the wavelet (detail) coefficients along with the original signal.

[swa,swd] = swt(y,1,'sym2');

subplot(211)

stem(t,y,'markerfacecolor',[0 0 1]);

title('Orignal Signal');

subplot(212)

stem(t,swd,'markerfacecolor',[0 0 1]);

title('Level 1 Wavelet Coefficients');

Compare the Fourier coefficient magnitudes for the 1-Hz sine wave with and without the
discontinuity.

dftsig = fft([x y]);
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dftsig = dftsig(1:length(y)/2+1,:);

df = 100/length(y);

freq = 0:df:50;

stem(freq,abs(dftsig));

xlabel('Hz'); ylabel('Magnitude');

legend('sine wave','sine wave with discontinuity');

There is minimal difference in the magnitudes of the Fourier coefficients. Because
the discrete Fourier basis vectors have support over the entire time interval, the
discrete Fourier transform does not detect the discontinuity as efficiently as the wavelet
transform.

Compare the level 1 wavelet coefficients for the sine wave with and without the
discontinuity.
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[swax,swdx] = swt(x,1,'sym2');

subplot(211)

stem(t,swd); title('Sine Wave with Discontinuity (Wavelet Coefficients)');

subplot(212)

stem(t,swdx); title('Sine Wave (Wavelet Coefficients)');

The wavelet coefficients of the two signals demonstrate a significant difference. Wavelet
analysis is often capable of revealing characteristics of a signal or image that other
analysis techniques miss, like trends, breakdown points, discontinuities in higher
derivatives, and self-similarity. Furthermore, because wavelets provide a different
view of data than those presented by Fourier techniques, wavelet analysis can often
significantly compress or denoise a signal without appreciable degradation.
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Continuous and Discrete Wavelet Transforms

This topic describes the major differences between the continuous wavelet transform
(CWT) and the discrete wavelet transform (DWT) – both decimated and nondecimated
versions. cwt is a discretized version of the CWT so that it can be implemented in a
computational environment. This discussion focuses on the 1-D case, but is applicable to
higher dimensions.

The cwt wavelet transform compares a signal with shifted and scaled (stretched or
shrunk) copies of a basic wavelet. If y ( )t  is a wavelet centered at t=0 with time support

on [-T/2, T/2], then 
1

s

t u

s
y( )-

 is centered at t = u with time support [-sT/2+u, sT/2+u].
If 0<s<1, the wavelet is contracted (shrunk) and if s>1, the wavelet is stretched. The
mathematical term for this is dilation. See “Continuous Wavelet Transform and Scale-
Based Analysis” on page 1-23 for examples of how this operation extracts features in
the signal by matching it against dilated and translated wavelets.

The major difference between the CWT and discrete wavelet transforms, such as the
dwt and modwt, is how the scale parameter is discretized. The CWT discretizes scale
more finely than the discrete wavelet transform. In the CWT, you typically fix some base
which is a fractional power of two, for example, 2

1/v  where v is an integer greater than
1. The v parameter is often referred to as the number of “voices per octave”. Different
scales are obtained by raising this base scale to positive integer powers, for example
2 1 2 3

j v
j

/
, , ,= º . The translation parameter in the CWT is discretized to integer values,

denoted here by m. The resulting discretized wavelets for the CWT are

1

2
2j v

n m
j v

/
( ).

/
y

-

The reason v is referred to as the number of voices per octave is because increasing the
scale by an octave (a doubling) requires v intermediate scales. Take for example 2 2

v v/
=

and then increase the numerator in the exponent until you reach 4, the next octave. You
move from 2 2

v v/
=  to 2 4

2v v/
= . There are v intermediate steps. Common values for v

are 10,12,14,16, and 32. The larger the value of v, the finer the discretization of the scale
parameter, s. However, this also increases the amount of computation required because
the CWT must be computed for every scale. The difference between scales on a log2 scale
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is 1/v. See “Time-Frequency Analysis with the Continuous Wavelet Transform” and
“Time-Frequency Analysis of Modulated Signals” for examples of scale vectors with the
CWT.

In the discrete wavelet transform, the scale parameter is always discretized to integer
powers of 2, 2j, j=1,2,3,..., so that the number of voices per octave is always 1. The
difference between scales on a log2 scale is always 1 for discrete wavelet transforms. Note
that this is a much coarser sampling of the scale parameter, s, than is the case with the
CWT. Further, in the decimated (downsampled) discrete wavelet transform (DWT), the
translation parameter is always proportional to the scale. This means that at scale, 2j,
you always translate by 2jm where m is a nonnegative integer. In nondecimated discrete
wavelet transforms like modwt and swt, the scale parameter is restricted to powers of
two, but the translation parameter is an integer like in the CWT. The discretized wavelet
for the DWT takes the following form

1

2

21

2j

j
j

n my ( ( )).-

The discretized wavelet for the nondecimated discrete wavelet transform, such as the
MODWT, is

1

2
2j

n m
j

y ( ).-

To summarize:

• The CWT and the discrete wavelet transforms differ in how they discretize the scale
parameter. The CWT typically uses exponential scales with a base smaller than 2, for
example 21/12 . The discrete wavelet transform always uses exponential scales with the
base equal to 2. The scales in the discrete wavelet transform are powers of 2. Keep in
mind that the physical intrepretation of scales for both the CWT and discrete wavelet
transforms requires the inclusion of the signal’s sampling interval if it is not equal to

one. For example, assume you are using the CWT and you set your base to s0
1 12

2=
/

.
To attach physical significance to that scale, you must multiply by the sampling
interval Dt , so a scale vector covering approximately four octaves with the sampling

interval taken into account is s t j
j

0
1 2 48D = , ,L . Note that the sampling interval
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multiplies the scales, it is not in the exponent. For discrete wavelet transforms the
base scale is always 2.

• The decimated and nondecimated discrete wavelet transforms differ in how they
discretize the translation parameter. The decimated discrete wavelet transform
(DWT), always translates by an integer multiple of the scale, 2jm . The nondecimated
discrete wavelet transform translates by integer shifts.

These differences in how scale and translation are discretized result in advantages
and disadvantages for the two classes of wavelet transforms. These differences also
determine use cases where one wavelet transform is likely to provide superior results.
Some important consequences of the discretization of the scale and translation parameter
are:

• The DWT provides a sparse representation for many natural signals. In other words,
the important features of many natural signals are captured by a subset of DWT
coefficients that is typically much smaller than the original signal. This “compresses”
the signal. With the DWT, you always end up with the same number of coefficients
as the original signal, but many of the coefficients may be close to zero in value. As a
result, you can often throw away those coefficients and still maintain a high-quality
signal approximation. With the CWT, you go from N samples for an N-length signal
to a M-by-N matrix of coefficents with M equal to the number of scales. The CWT is
a highly redundant transform. There is significant overlap between wavelets at each
scale and between scales. The computational resources required to compute the CWT
and store the coefficients is much larger than the DWT. The nondecimated discrete
wavelet transform is also redundant but the redundancy factor is usually significantly
less than the CWT, because the scale parameter is not discretized so finely. For the
nondecimated discrete wavelet transform, you go from N samples to an L+1-by-N
matrix of coefficients where L is the level of the transform.

• The strict discretization of scale and translation in the DWT ensures that the DWT
is an orthonormal transform (when using an orthogonal wavelet). There are many
benefits of orthonormal transforms in signal analysis. Many signal models consist
of some deterministic signal plus white Gaussian noise. An orthonormal transform
takes this kind of signal and outputs the transform applied to the signal plus white
noise. In other words, an orthonormal transform takes in white Gaussian noise and
outputs white Gaussian noise. The noise is uncorrelated at the input and output. This
is important in many statistical signal processing settings. In the case of the DWT,
the signal of interest is typically captured by a few large-magnitude DWT coefficients,
while the noise results in many small DWT coefficients that you can throw away.
If you have studied linear algebra, you have no doubt learned many advantages to
using orthonormal bases in the analysis and representation of vectors. The wavelets
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in the DWT are like orthonormal vectors. Neither the CWT nor the nondecimated
discrete wavelet transform are orthonormal transforms. The wavelets in the CWT
and nondecimated discrete wavelet transform are technically called frames, they are
linearly-dependent sets.

• The DWT is not shift-invariant. Because the DWT downsamples, a shift in the input
signal does not manifest itself as a simple equivalent shift in the DWT coefficients
at all levels. A simple shift in a signal can cause a significant realignment of signal
energy in the DWT coefficients by scale. The CWT and nondecimated discrete
wavelet transform are shift-invariant. There are some modifications of the DWT
such as the dual-tree complex discrete wavelet transform that mitigate the lack of
shift invariance in the DWT, see “Critically Sampled and Oversampled Wavelet
Filter Banks” for some conceptual material on this topic and“Dual-Tree Wavelet
Transforms” for an example.

• The discrete wavelet transforms are equivalent to discrete filter banks. Specifically,
they are tree-structured discrete filter banks where the signal is first filtered by a
lowpass and a highpass filter to yield lowpass and highpass subbands. Subsequently,
the lowpass subband is iteratively filtered by the same scheme to yield narrower
octave-band lowpass and highpass subbands. In the DWT, the filter outputs are
downsampled at each successive stage. In the nondecimated discrete wavelet
transform, the outputs are not downsampled. The filters that define the discrete
wavelet transforms typically only have a small number of coefficients so the transform
can be implemented very efficiently. For both the DWT and nondecimated discrete
wavelet transform, you do not actually require an expression for the wavelet.
The filters are sufficient. This is not the case with the CWT. The most common
implementation of the CWT requires you have the wavelet explicitly defined. Even
though the nondecimated discrete wavelet transform does not downsample the signal,
the filter bank implementation still allows for good computational performance, but
not as good as the DWT.

• The discrete wavelet transforms provide perfect reconstruction of the signal upon
inversion. This means that you can take the discrete wavelet transform of a signal
and then use the coefficients to synthesize an exact reproduction of the signal to
within numerical precision. You can implement an inverse CWT, but it is often the
case that the reconstruction is not perfect. Reconstructing a signal from the CWT
coefficients is a much less stable numerical operation.

• The finer sampling of scales in the CWT typically results in a higher-fidelity signal
analysis. You can localize transients in your signal, or characterize oscillatory
behavior better with the CWT than with the discrete wavelet transforms.

For additional information on wavelet transforms and applications, see
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• “From Fourier Analysis to Wavelet Analysis” on page 1-16
• “Continuous Wavelet Transform and Scale-Based Analysis” on page 1-23
• “Continuous Wavelet Transform as a Bandpass Filter” on page 1-30
• “Inverse Continuous Wavelet Transform” on page 1-34
• “Interpreting Continuous Wavelet Coefficients” on page 1-37
• “Critically-Sampled Discrete Wavelet Transform” on page 1-54
• “Wavelet Packet Analysis” on page 1-64

Guidelines for Continuous Wavelet Transform vs. Discrete Wavelet
Transform

Based on the previous section, here are some basic guidelines for deciding on whether to
use a discrete or continuous wavelet transform.

• If your application is to obtain the sparsest possible signal representation for
compression, denoising, or signal transmission, use the DWT with wavedec.

• If your application requires an orthonormal transform, use the DWT with one of
the orthogonal wavelet filters. The orthogonal families in the Wavelet Toolbox are
designated as type 1 wavelets in the wavelet manager, wavemngr. Valid built-in
orthogonal wavelet families are 'haar', 'dbN', 'fkN', 'coifN', or 'symN' where
N is the number of vanishing moments for all families except 'fk'. For 'fk', N is
the number of filter coefficients. See waveinfo for more detail.

• If your application requires a shift-invariant transform but you still need perfect
reconstruction and some measure of computational efficiency, try a nondecimated
discrete wavelet transform like modwt or a dual-tree transform like dddtree.

• If your primary goal is a detailed time-frequency (scale) analysis or precise
localization of signal transients, use the CWT with cwtft. For an example of time-
frequency analysis with the CWT, see “Time-Frequency Analysis with the Continuous
Wavelet Transform”.

• For denoising a signal by thresholding wavelet coefficients, use the DWT with wden or
wdencmp. For an example of denoising with the DWT, see “Wavelet Denoising”.

• If your application requires that you have a solid understanding of the statistical
properties of the wavelet coefficients, use a discrete wavelet transform. There is active
work in understanding the statistical properties of the CWT, but currently there are
many more distributional results for the discrete wavelet transforms. The success of
the DWT in denoising is largely due to our understanding of its statistical properties.
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For an example of estimation and hypothesis testing using a nondecimated discrete
wavelet transform see “Wavelet Analysis of Financial Data”.
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From Fourier Analysis to Wavelet Analysis

In this section...

“Inner Products” on page 1-16
“Fourier Transform” on page 1-18
“Short-Time Fourier Transform” on page 1-20

Inner Products

Both the Fourier and wavelet transforms measure similarity between a signal and an
analyzing function. Both transforms use a mathematical tool called an inner product
as this measure of similarity. The two transforms differ in their choice of analyzing
function. This results in the different way the two transforms represent the signal and
what kind of information can be extracted.

As a simple example of the inner product as a measure of similarity, consider the inner
product of vectors in the plane. The following MATLAB example calculates the inner
product of three unit vectors, { , , }u v w , in the plane:
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u = [sqrt(3)/2 1/2];

v = [1/sqrt(2) 1/sqrt(2)];

w = [0 1];

% Three unit vectors in the plane

quiver([0 0 0],[0 0 0],[u(1) v(1) w(1)],[u(2) v(2) w(2)]);

axis([-1 1 0 1]);

text(-0.020,0.9371,'w');

text(0.6382,0.6623,'v');

text(0.7995,0.4751,'u');

% Compute inner products and print results

fprintf('The inner product of u and v is %1.2f\n', dot(u,v))

fprintf('The inner product of v and w is %1.2f\n', dot(w,v))

fprintf('The inner product of u and w is %1.2f\n', dot(u,w))
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Looking at the figure, it is clear that u and v are most similar in their orientation, while
u and w are the most dissimilar.

The inner products capture this geometric fact. Mathematically, the inner product of
two vectors, u and v is equal to the product of their norms and the cosine of the angle, θ,
between them:

< >=u v u v, || |||| ||cos( )q

For the special case when both u and v have unit norm, or unit energy, the inner product
is equal to cos(θ) and therefore lies between [-1,1]. In this case, you can interpret the
inner product directly as a correlation coefficient. If either u or v does not have unit
norm, the inner product may exceed 1 in absolute value. However, the inner product still
depends on the cosine of the angle between the two vectors making it interpretable as
a kind of correlation. Note that the absolute value of the inner product is largest when
the angle between them is either 0 or p  radians (0 or 180 degrees). This occurs when one
vector is a real-valued scalar multiple of the other.

While inner products in higher-dimensional spaces like those encountered in the Fourier
and wavelet transforms do not exhibit the same ease of geometric interpretation as the
previous example, they measure similarity in the same way. A significant part of the
utility of these transforms is that they essentially summarize the correlation between the
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signal and some basic functions with certain physical properties, like frequency, scale,
or position. By summarizing the signal in these constituent parts, we are able to better
understand the mechanisms that produced the signal.

Fourier Transform

Fourier analysis is used as a starting point to introduce the wavelet transforms, and
as a benchmark to demonstrate cases where wavelet analysis provides a more useful
characterization of signals than Fourier analysis.

Mathematically, the process of Fourier analysis is represented by the Fourier transform:

F f t e dtj t
( ) ( )w w=

-•

• -Ú

which is the integral (sum) over all time of the signal f(t) multiplied by a complex
exponential. Recall that a complex exponential can be broken down into real and
imaginary sinusoidal components. Note that the Fourier transform maps a function of a
single variable into another function of a single variable.

The integral defining the Fourier transform is an inner product. See “Inner Products”
on page 1-16 for an example of how inner products measure of similarity between
two signals. For each value of ω, the integral (or sum) over all values of time produces
a scalar, F(ω), that summarizes how similar the two signals are. These complex-valued
scalars are the Fourier coefficients. Conceptually, multiplying each Fourier coefficient,
F(ω), by a complex exponential (sinusoid) of frequency ω yields the constituent sinusoidal
components of the original signal. Graphically, the process looks like

Because e j tw  is complex-valued, F(ω) is, in general, complex-valued. If the signal
contains significant oscillations at an angular frequency of w

0 , the absolute value of
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F( )w0  will be large. By examining a plot of | ( )|F w  as a function of angular frequency, it
is possible to determine what frequencies contribute most to the variability of f(t).

To illustrate how the Fourier transform captures similarity between a signal and
sinusoids of different frequencies, the following MATLAB code analyzes a signal
consisting of two sinusoids of 4 and 8 Hertz (Hz) corrupted by additive noise using the
discrete Fourier transform.

rng(0,'twister');

Fs = 128;

t = linspace(0,1,128);

x = 2*cos(2*pi*4*t)+1.5*sin(2*pi*8*t)+randn(size(t));

xDFT = fft(x);

Freq = 0:64;

subplot(211);

plot(t,x); xlabel('Seconds'); ylabel('Amplitude');

subplot(212);

plot(Freq,abs(xDFT(1:length(xDFT)/2+1)))

set(gca,'xtick',[4:4:64]);

xlabel('Hz'); ylabel('Magnitude');

Viewed as a time signal, it is difficult to determine what significant oscillations are
present in the data. However, looking at the absolute value of the Fourier transform
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coefficients as function of frequency, the dominant oscillations at 4 and 8 Hz are easy to
detect.

Short-Time Fourier Transform

The Fourier transform summarizes the similarity between a signal and a sinusoid
with a single complex number. The magnitude of the complex number captures the
degree to which oscillations at a particular frequency contribute to the signal's energy,
while the argument of the complex number captures phase information. Note that the
Fourier coefficients have no time dependence. The Fourier coefficients are obtained
by integrating, or summing, over all time, so it is clear that this information is lost.
Consider the following two signals:

Both signals consist of a single sine wave with a frequency of 20 Hz. However, in the top
signal, the sine wave lasts the entire 1000 milliseconds. In the bottom plot, the sine wave
starts at 250 and ends at 750 milliseconds. The Fourier transform detects that the two
signals have the same frequency content, but has no way of capturing that the duration
of the 20 Hz oscillation differs between the two signals. Further, the Fourier transform
has no mechanism for marking the beginning and end of the intermittent sine wave.

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier transform
to analyze only a small section of the signal at a time -- a technique called windowing
the signal. Gabor's adaptation is called the short-time Fourier transform (STFT). The
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technique works by choosing a time function, or window, that is essentially nonzero only
on a finite interval. As one example consider the following Gaussian window function:

w t e
t

( ) =
-a

p

a
2

The Gaussian function is centered around t=0 on an interval that depends on the value of
α. Shifting the Gaussian function by τ results in:

w t e
t( ,) ( )

- =
- -

t
a

p

a t
2

which centers the Gaussian window around τ. Multiplying a signal by w t( )-t  selects
a portion of the signal centered at τ. Taking the Fourier transform of these windowed
segments for different values of τ, produces the STFT. Mathematically, this is:

F f t w t e dtj t( , ) ( ) ( )w t t w= -Ú
-

The STFT maps a function of one variable into a function of two variables, ω and τ.
This two-dimensional representation of a one-dimensional signal means that there is
redundancy in the STFT. The following figure demonstrates how the STFT maps a signal
into a time-frequency representation.

The STFT represents a sort of compromise between time- and frequency-based views of
a signal. It provides some information about both when and at what frequencies a signal
event occurs. However, you can only obtain this information with limited precision, and
that precision is determined by the size of the window.

While the STFT compromise between time and frequency information can be useful, the
drawback is that once you choose a particular size for the time window, that window is
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the same for all frequencies. Many signals require a more flexible approach -- one where
you can vary the window size to determine more accurately either time or frequency.

Instead of plotting the STFT in three dimensions, the convention is to code | ( , )|F w t  as
intensity on some color map. Computing and displaying the STFT of the two 20-Hz sine
waves of different duration shown previously:

By using the STFT, you can see that the intermittent sine wave begins near 250
msec and ends around 750 msec. Additionally, you can see that the signal's energy is
concentrated around 20 Hz.
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Continuous Wavelet Transform and Scale-Based Analysis

In this section...

“Definition of the Continuous Wavelet Transform” on page 1-23
“Scale” on page 1-24
“Shifting” on page 1-28
“CWT as a Windowed Transform” on page 1-28

Definition of the Continuous Wavelet Transform

Like the Fourier transform, the continuous wavelet transform (CWT) uses inner products
to measure the similarity between a signal and an analyzing function. In the Fourier
transform, the analyzing functions are complex exponentials, e j tw . The resulting
transform is a function of a single variable, ω. In the short-time Fourier transform, the
analyzing functions are windowed complex exponentials, w t e j t

( )
w , and the result in a

function of two variables. The STFT coefficients, F( , ),w t  represent the match between
the signal and a sinusoid with angular frequency ω in an interval of a specified length
centered at τ.

In the CWT, the analyzing function is a wavelet, ψ. The CWT compares the signal to
shifted and compressed or stretched versions of a wavelet. Stretching or compressing a
function is collectively referred to as dilation or scaling and corresponds to the physical
notion of scale. By comparing the signal to the wavelet at various scales and positions,
you obtain a function of two variables. The two-dimensional representation of a one-
dimensional signal is redundant. If the wavelet is complex-valued, the CWT is a complex-
valued function of scale and position. If the signal is real-valued, the CWT is a real-
valued function of scale and position. For a scale parameter, a>0, and position, b, the
CWT is:

C a b f t t f t
a

dtt b
a

( , ; ( ), ( )) ( ) ( )*y y=
-•

• -Ú
1

where *  denotes the complex conjugate. Not only do the values of scale and position
affect the CWT coefficients, the choice of wavelet also affects the values of the
coefficients.
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By continuously varying the values of the scale parameter, a, and the position parameter,
b, you obtain the cwt coefficients C(a,b). Note that for convenience, the dependence of the
CWT coefficients on the function and analyzing wavelet has been suppressed.

Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the
constituent wavelets of the original signal.

There are many different admissible wavelets that can be used in the CWT. While it may
seem confusing that there are so many choices for the analyzing wavelet, it is actually
a strength of wavelet analysis. Depending on what signal features you are trying to
detect, you are free to select a wavelet that facilitates your detection of that feature.
For example, if you are trying to detect abrupt discontinuities in your signal, you may
choose one wavelet. On the other hand, if you are interesting in finding oscillations with
smooth onsets and offsets, you are free to choose a wavelet that more closely matches
that behavior.

Scale

Like the concept of frequency, scale is another useful property of signals and images. For
example, you can analyze temperature data for changes on different scales. You can look
at year-to-year or decade-to-decade changes. Of course, you can examine finer (day-to-
day), or coarser scale changes as well. Some processes reveal interesting changes on long
time, or spatial scales that are not evident on small time or spatial scales. The opposite
situation also happens. Some of our perceptual abilities exhibit scale invariance. You
recognize people you know regardless of whether you look at a large portrait, or small
photograph.

To go beyond colloquial descriptions such as “stretching” or “shrinking” we introduce
the scale factor, often denoted by the letter a. The scale factor is a inherently positive
quantity, a>0. For sinusoids, the effect of the scale factor is very easy to see.
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In sin(at), the scale is the inverse of the radian frequency, a.

The scale factor works exactly the same with wavelets. The smaller the scale factor, the
more “compressed” the wavelet. Conversely, the larger the scale, the more stretched the
wavelet. The following figure illustrates this for wavelets at scales 1,2, and 4.



1 Getting Started with Wavelet Toolbox Software

1-26

This general inverse relationship between scale and frequency holds for signals in
general. See “Continuous Wavelet Transform and Scale-Based Analysis” on page 1-23
for more information on the relationship between scale and frequency.

Not only is a time-scale representation a different way to view data, it is a very natural
way to view data derived from a great number of natural phenomena.

Scale and Frequency

There is clearly a relationship between scale and frequency. Recall that higher scales
correspond to the most “stretched” wavelets. The more stretched the wavelet, the longer
the portion of the signal with which it is being compared, and therefore the coarser the
signal features measured by the wavelet coefficients.
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To summarize, the general correspondence between scale and frequency is:

• Low scale a ⇒ Compressed wavelet ⇒ Rapidly changing details ⇒ High frequency ω.
• High scale a ⇒ Stretched wavelet ⇒ Slowly changing, coarse features ⇒ Low

frequency ω.

While there is a general relationship between scale and frequency, no precise
relationship exists. Users familiar with Fourier analysis often want to define a mapping
between a wavelet at a given scale with a specified sampling period to a frequency in
hertz. You can only do this in a general sense. Therefore, it is better to talk about the
pseudo-frequency corresponding to a scale. The Wavelet Toolbox software provides two
functions centfrq and scal2frq, which enable you to find these approximate scale-
frequency relationships for specified wavelets and scales.

The basic approach identifies the peak power in the Fourier transform of the wavelet as
its center frequency and divides that value by the product of the scale and the sampling
interval. See scal2frq for details. The following example shows the match between the
estimated center frequency of the db8 wavelet and a sinusoid of the same frequency.
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The relationship between scale and frequency in the CWT is also explored in “Continuous
Wavelet Transform as a Bandpass Filter” on page 1-30.

Shifting

Shifting a wavelet simply means delaying (or advancing) its onset. Mathematically,
delaying a function f(t) by k is represented by f(t – k):

CWT as a Windowed Transform

In “Short-Time Fourier Transform” on page 1-20, the STFT is described as a windowing
of the signal to create a local frequency analysis. A shortcoming of the STFT approach
is that the window size is constant. There is a trade off in the choice of window size.
A longer time window improves frequency resolution while resulting in poorer time
resolution because the Fourier transform loses all time resolution over the duration
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of the window. Conversely, a shorter time window improves time localization while
resulting in poorer frequency resolution.

Wavelet analysis represents the next logical step: a windowing technique with variable-
sized regions. Wavelet analysis allows the use of long time intervals where you want
more precise low-frequency information, and shorter regions where you want high-
frequency information.

The following figure contrasts time, frequency, time-frequency, and time-scale
representations of a signal.
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Continuous Wavelet Transform as a Bandpass Filter

In this section...

“CWT as a Filtering Technique” on page 1-30
“DFT-Based Continuous Wavelet Transform” on page 1-31

CWT as a Filtering Technique

The continuous wavelet transform (CWT) computes the inner product of a signal, f t( ) ,
with translated and dilated versions of an analyzing wavelet, y ( ).t  The definition of the
CWT is:

C a b f t t f t
a

dtt b
a

( , ; ( ), ( )) ( ) ( )*y y=
-•
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1

You can also interpret the CWT as a frequency-based filtering of the signal by rewriting
the CWT as an inverse Fourier transform.

C a b f t t a a e df j b( , ; ( ), ( )) ( ) ( ))( *y
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Ú
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where ˆ( )f w  and ˆ ( )y w  are the Fourier transforms of the signal and the wavelet.

From the preceding equations, you can see that stretching a wavelet in time causes
its support in the frequency domain to shrink. In addition to shrinking the frequency
support, the center frequency of the wavelet shifts toward lower frequencies. The
following figure demonstrates this effect for a hypothetical wavelet and scale (dilation)
factors of 1,2, and 4.
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This depicts the CWT as a bandpass filtering of the input signal. CWT coefficients at
lower scales represent energy in the input signal at higher frequencies, while CWT
coefficients at higher scales represent energy in the input signal at lower frequencies.
However, unlike Fourier bandpass filtering, the width of the bandpass filter in the CWT
is inversely proportional to scale. The width of the CWT filters decreases with increasing
scale. This follows from the uncertainty relationships between the time and frequency
support of a signal: the broader the support of a signal in time, the narrower its support
in frequency. The converse relationship also holds.

In the wavelet transform, the scale, or dilation operation is defined to preserve energy.
To preserve energy while shrinking the frequency support requires that the peak energy
level increases. The quality factor, or Q factor of a filter is the ratio of its peak energy to
bandwidth. Because shrinking or stretching the frequency support of a wavelet results in
commensurate increases or decreases in its peak energy, wavelets are often referred to as
constant-Q filters.

DFT-Based Continuous Wavelet Transform

The equation in the preceding section defined the CWT as the inverse Fourier transform
of a product of Fourier transforms.
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C a b f t t a a e df j b( , ; ( ), ( )) ( ) * ( )y
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The time variable in the inverse Fourier transform is the translation parameter, b.

This suggests that you can compute the CWT with the inverse Fourier transform.
Because there are efficient algorithms for the computation of the discrete Fourier
transform and its inverse, you can often achieve considerable savings by using fft and
ifft when possible.

To obtain a picture of the CWT in the Fourier domain, start with the definition of the
wavelet transform:
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you can rewrite the wavelet transform as
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which explicitly expresses the CWT as a convolution.

To implement the discretized verion of the CWT, assume that the input sequence is a
length N vector, x[n]. The discrete version of the preceding convolution is:
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To obtain the CWT, it appears you have to compute the convolution for each value of the
shift parameter, b, and repeat this process for each scale, a.
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However, if the two sequences are circularly-extended (periodized to length N), you can
express the circular convolution as a product of discrete Fourier transforms. The CWT is
the inverse Fourier transform of the product
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where Δt is the sampling interval (period).

Expressing the CWT as an inverse Fourier transform enables you to use the
computationally-efficient fft and ifft algorithms to reduce the cost of computing
convolutions.

The cwtft function implements the CWT using an FFT-based algorithm. See
cwtftinfo for information pertaining to the supported analyzing wavelets.
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Inverse Continuous Wavelet Transform

The icwtft function implements the inverse CWT. Using icwtft requires that you
obtain the CWT from cwtft. The Wavelet Toolbox does not support the inverse CWT for
a general CWT obtained using cwt.

Because the CWT is a redundant transform, there is not a unique way to define the
inverse. The inverse CWT implemented in the Wavelet Toolbox utilizes a discrete version
of the single integral formula due to Morlet.

The inverse CWT is classically presented in the double-integral form. Assume you have a
wavelet with a Fourier transform that satisfies the admissibility condition:
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For wavelets satisfying the admissibility condition and finite-energy functions, f(t), you
can define the inverse CWT as:
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For analyzing wavelets and functions satisfying the following conditions, a single integral
formula for the inverse CWT exists. These conditions are:

• The analyzed function, f(t), is real-valued and the analyzing wavelet has a real-valued
Fourier transform.

• The analyzed function, f(t), is real-valued and the Fourier transform of the analyzing
wavelet has support only on the set of nonnegative frequencies. This is referred to as
an analytic wavelet. A function whose Fourier transform only has support on the set
of nonnegative frequencies must be complex-valued.

The preceding conditions constrain the set of possible analyzing wavelets. If you inspect
the list of wavelets supported by cwtft, each wavelet is either analytic or has a real-
valued Fourier transform. Because the toolbox only supports the analysis of real-valued
functions, the real-valued condition on the analyzed function is always satisfied.

To motivate the single integral formula, let ψ1 and ψ2 be two wavelets that satisfy the
following two-wavelet admissibility condition:
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INote that the above constant may be complex-valued. Let f(t) and g(t) be two finite
energy functions. If the two-wavelet admissibility condition is satisfied, the following
equality holds:

C f g f g db da

ay y y y
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where < , > denotes the inner product, * denotes the complex conjugate, and the
dependence of ψ1 and ψ2 on scale and position has been suppressed for convenience.

The key to the single integral formula for the inverse CWT is to recognize that the
two-wavelet admissibility condition can be satisfied even if one of the wavelets is not
admissible. In other words, it is not necessary that both ψ1 and ψ2 be separately
admissible. You can also relax the requirements further by allowing one of the functions 
and wavelets to be distributions. By first letting g(t) be the Dirac delta function (a
distribution) and also allowing ψ2 to be the Dirac delta function, you can derive the single
integral formula for the inverse CWT
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where Re{ } denotes the real part.

The preceding equation demonstrates that you can reconstruct the signal by summing
the scaled CWT coefficients over all scales.

By summing the scaled CWT coefficients from select scales, you obtain an approximation
to the original signal. This is useful in situations where your phenomenon of interest is
localized in scale.
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icwtft implements a discretized version of the above integral.
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Interpreting Continuous Wavelet Coefficients
Because the CWT is a redundant transform and the CWT coefficients depend on the
wavelet, it can be challenging to interpret the results.

To help you in interpreting CWT coefficients, it is best to start with a simple signal to
analyze and an analyzing wavelet with a simple structure.

A signal feature that wavelets are very good at detecting is a discontinuity, or
singularity. Abrupt transitions in signals result in wavelet coefficients with large
absolute values.

For the signal create a shifted impulse. The impulse occurs at point 500.

x = zeros(1000,1);

x(500) = 1;

For the wavelet, pick the Haar wavelet.

[~,psi,xval] = wavefun('haar',10);

plot(xval,psi); axis([0 1 -1.5 1.5]);

title('Haar Wavelet');

To compute the CWT using the Haar wavelet at scales 1 to 128, enter:

CWTcoeffs = cwt(x,1:128,'haar');

CWTcoeffs is a 128-by-1000 matrix. Each row of the matrix contains the CWT
coefficients for one scale. There are 128 rows because the SCALES input to cwt is 1:128.
The column dimension of the matrix matches the length of the input signal.
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Recall that the CWT of a 1D signal is a function of the scale and position parameters. To
produce a plot of the CWT coefficients, plot position along the x-axis, scale along the y-
axis, and encode the magnitude, or size of the CWT coefficients as color at each point in
the x-y, or time-scale plane.

You can produce this plot using cwt with the optional input argument 'plot'.

cwt(x,1:128,'haar','plot'); 

colormap jet; colorbar;

The preceding figure was modified with text labels to explicitly show which colors
indicate large and small CWT coefficients.

You can also plot the size of the CWT coefficients in 3D with

cwt(x,1:64,'haar','3Dplot'); colormap jet;

where the number of scales has been reduced to aid in visualization.

Examining the CWT of the shifted impulse signal, you can see that the set of large CWT
coefficients is concentrated in a narrow region in the time-scale plane at small scales
centered around point 500. As the scale increases, the set of large CWT coefficients
becomes wider, but remains centered around point 500. If you trace the border of this
region, it resembles the following figure.
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This region is referred to as the cone of influence of the point t=500 for the Haar wavelet.
For a given point, the cone of influence shows you which CWT coefficients are affected by
the signal value at that point.

To understand the cone of influence, assume that you have a wavelet supported on [-C,
C]. Shifting the wavelet by b and scaling by a results in a wavelet supported on [-Ca+b,
Ca+b]. For the simple case of a shifted impulse, d t( )t - , the CWT coefficients are only
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nonzero in an interval around τ equal to the support of the wavelet at each scale. You can
see this by considering the formal expression of the CWT of the shifted impulse.

C a b t t t
a

dt
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t b
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b

a
( , ; ( ), ( )) ( ) ( ) ( )* *d t y d t y y t- = - =

-•

• - -Ú
1 1

For the impulse, the CWT coefficients are equal to the conjugated, time-reversed, and
scaled wavelet as a function of the shift parameter, b. You can see this by plotting the
CWT coefficients for a select few scales.

subplot(311)

plot(CWTcoeffs(10,:)); title('Scale 10');

subplot(312)

plot(CWTcoeffs(50,:)); title('Scale 50');

subplot(313)

plot(CWTcoeffs(90,:)); title('Scale 90');

The cone of influence depends on the wavelet. You can find and plot the cone of influence
for a specific wavelet with conofinf.

The next example features the superposition of two shifted impulses,
d d( ) ( )t t- + -300 500 . In this case, use the Daubechies' extremal phase wavelet with four
vanishing moments, db4. The following figure shows the cone of influence for the points
300 and 500 using the db4 wavelet.
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Look at point 400 for scale 20. At that scale, you can see that neither cone of influence
overlaps the point 400. Therefore, you can expect that the CWT coefficient will be zero at
that point and scale. The signal is only nonzero at two values, 300 and 500, and neither
cone of influence for those values includes the point 400 at scale 20. You can confirm this
by entering:

x = zeros(1000,1);

x([300 500]) = 1;

CWTcoeffs = cwt(x,1:128,'db4');

plot(CWTcoeffs(20,:)); grid on;

Next, look at the point 400 at scale 80. At scale 80, the cones of influence for both points
300 and 500 include the point 400. Even though the signal is zero at point 400, you
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obtain a nonzero CWT coefficient at that scale. The CWT coefficient is nonzero because
the support of the wavelet has become sufficiently large at that scale to allow signal
values 100 points above and below to affect the CWT coefficient. You can confirm this by
entering:

plot(CWTcoeffs(80,:));

grid on;

In the preceding example, the CWT coefficients became large in the vicinity of an abrupt
change in the signal. This ability to detect discontinuities is a strength of the wavelet
transform. The preceding example also demonstrated that the CWT coefficients localize
the discontinuity best at small scales. At small scales, the small support of the wavelet
ensures that the singularity only affects a small set of wavelet coefficients.

To demonstrate why the wavelet transform is so adept at detecting abrupt changes in the
signal, consider a shifted Heaviside, or unit step signal.

x = [zeros(500,1); ones(500,1)];

CWTcoeffs = cwt(x,1:64,'haar','plot'); colormap jet;
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Similar to the shifted impulse example, the abrupt transition in the shifted step function
results in large CWT coefficients at the discontinuity. The following figure illustrates
why this occurs.

A B C

In the preceding figure, the red function is the shifted unit step function. The black
functions labeled A, B, and C depict Haar wavelets at the same scale but different
positions. You can see that the CWT coefficients around position A are zero. The signal is
zero in that neighborhood and therefore the wavelet transform is also zero because any
wavelet integrates to zero.

Note the Haar wavelet centered around position B. The negative part of the Haar
wavelet overlaps with a region of the step function that is equal to 1. The CWT
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coefficients are negative because the product of the Haar wavelet and the unit step is a
negative constant. Integrating over that area yields a negative number.

Note the Haar wavelet centered around position C. Here the CWT coefficients are zero.
The step function is equal to one. The product of the wavelet with the step function is
equal to the wavelet. Integrating any wavelet over its support is zero. This is the zero
moment property of wavelets.

At position B, the Haar wavelet has already shifted into the nonzero portion of the step
function by 1/2 of its support. As soon as the support of the wavelet intersects with the
unity portion of the step function, the CWT coefficients are nonzero. In fact, the situation
illustrated in the previous figure coincides with the CWT coefficients achieving their
largest absolute value. This is because the entire negative deflection of the wavelet
oscillation overlaps with the unity portion of the unit step while none of the positive
deflection of the wavelet does. Once the wavelet shifts to the point that the positive
deflection overlaps with the unit step, there will be some positive contribution to the
integral. The wavelet coefficients are still negative (the negative portion of the integral is
larger in area), but they are smaller in absolute value than those obtained at position B.

The following figure illustrates two other positions where the wavelet intersects the unity
portion of the unit step.
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In the top figure, the wavelet has just begun to overlap with the unity portion of the unit
step. In this case, the CWT coefficients are negative, but not as large in absolute value as
those obtained at position B. In the bottom figure, the wavelet has shifted past position
B and the positive deflection of the wavelet begins to contribute to the integral. The CWT
coefficients are still negative, but not as large in absolute value as those obtained at
position B.

You can now visualize how the wavelet transform is able to detect discontinuities. You
can also visualize in this simple example exactly why the CWT coefficients are negative
in the CWT of the shifted unit step using the Haar wavelet. Note that this behavior
differs for other wavelets.

x = [zeros(500,1); ones(500,1)];

CWTcoeffs = cwt(x,1:64,'haar','plot'); colormap jet;

% plot a few scales for visualization

subplot(311);

plot(CWTcoeffs(5,:)); title('Scale 5');

subplot(312);

plot(CWTcoeffs(10,:)); title('Scale 10');

subplot(313);

plot(CWTcoeffs(50,:)); title('Scale 50');

Next consider how the CWT represents smooth signals. Because sinusoidal oscillations
are a common phenomenon, this section examines how sinusoidal oscillations in the
signal affect the CWT coefficients. To begin, consider the sym4 wavelet at a specific scale
superimposed on a sine wave.
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Recall that the CWT coefficients are obtained by computing the product of the signal with
the shifted and scaled analyzing wavelet and integrating the result. The following figure
shows the product of the wavelet and the sinusoid from the preceding figure.

You can see that integrating over this product produces a positive CWT coefficient. That
results because the oscillation in the wavelet approximately matches a period of the sine
wave. The wavelet is in phase with the sine wave. The negative deflections of the wavelet
approximately match the negative deflections of the sine wave. The same is true of the
positive deflections of both the wavelet and sinusoid.

The following figure shifts the wavelet 1/2 of the period of the sine wave.
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Examine the product of the shifted wavelet and the sinusoid.

You can see that integrating over this product produces a negative CWT coefficient. That
results because the wavelet is 1/2 cycle out of phase with the sine wave. The negative
deflections of the wavelet approximately match the positive deflections of the sine wave.
The positive deflections of the wavelet approximately match the negative deflections of
the sinusoid.

Finally, shift the wavelet approximately one quarter cycle of the sine wave.

The following figure shows the product of the shifted wavelet and the sinusoid.
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Integrating over this product produces a CWT coefficient much smaller in absolute value
than either of the two previous examples. That results because the negative deflection
of the wavelet approximately aligns with a positive deflection of the sine wave. Also, the
main positive deflection of the wavelet approximately aligns with a positive deflection of
the sine wave. The resulting product looks much more like a wavelet than the other two
products. If it looked exactly like a wavelet, the integral would be zero.

At scales where the oscillation in the wavelet occurs on either a much larger or smaller
scale than the period of the sine wave, you obtain CWT coefficients near zero. The
following figure illustrates the case where the wavelet oscillates on a much smaller scale
than the sinusoid.

The product shown in the bottom pane closely resembles the analyzing wavelet.
Integrating this product results in a CWT coefficient near zero.
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The following example constructs a 60-Hz sine wave and obtains the CWT using the
sym8 wavelet.

t = linspace(0,1,1000);

x = cos(2*pi*60*t);

CWTcoeffs = cwt(x,1:64,'sym8','plot'); colormap jet;

Note that the CWT coefficients are large in absolute value around scales 9 to 21. You can
find the pseudo-frequencies corresponding to these scales using the command:

freq = scal2frq(9:21,'sym8',1/1000);

Note that the CWT coefficients are large at scales near the frequency of the sine wave.
You can clearly see the sinusoidal pattern in the CWT coefficients at these scales with
the following code.

surf(CWTcoeffs); colormap jet;

shading('interp'); view(-60,12);
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The final example constructs a signal consisting of both abrupt transitions and smooth
oscillations. The signal is a 2-Hz sinusoid with two introduced discontinuities.

N = 1024;

t = linspace(0,1,1024);

x = 4*sin(4*pi*t);

x = x - sign(t - .3) - sign(.72 - t);

plot(t,x); xlabel('t'); ylabel('x');

grid on;

Note the discontinuities near t=0.3 and t=0.7.

Obtain and plot the CWT using the sym4 wavelet.
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CWTcoeffs = cwt(x,1:180,'sym4');

imagesc(t,1:180,abs(CWTcoeffs)); 

colormap jet; axis xy;

xlabel('t'); ylabel('Scales');

Note that the CWT detects both the abrupt transitions and oscillations in the signal.
The abrupt transitions affect the CWT coefficients at all scales and clearly separate
themselves from smoother signal features at small scales. On the other hand, the
maxima and minima of the 2–Hz sinusoid are evident in the CWT coefficients at large
scales and not apparent at small scales.

The following general principles are important to keep in mind when interpreting CWT
coefficients.

• Cone of influence— Depending on the scale, the CWT coefficient at a point can
be affected by signal values at points far removed. You have to take into account
the support of the wavelet at specific scales. Use conofinf to determine the cone of
influence. Not all wavelets are equal in their support. For example, the Haar wavelet
has smaller support at all scales than the sym4 wavelet.

• Detecting abrupt transitions— Wavelets are very useful for detecting abrupt
changes in a signal. Abrupt changes in a signal produce relatively large wavelet
coefficients (in absolute value) centered around the discontinuity at all scales.
Because of the support of the wavelet, the set of CWT coefficients affected by the
singularity increases with increasing scale. Recall this is the definition of the cone
of influence. The most precise localization of the discontinuity based on the CWT
coefficients is obtained at the smallest scales.
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• Detecting smooth signal features— Smooth signal features produce relatively
large wavelet coefficients at scales where the oscillation in the wavelet correlates best
with the signal feature. For sinusoidal oscillations, the CWT coefficients display an
oscillatory pattern at scales where the oscillation in the wavelet approximates the
period of the sine wave.

The basic algorithm for the continuous wavelet transform (CWT) is:

1 Take a wavelet and compare it to a section at the start of the original signal.
2 Calculate a number, C, that represents how closely correlated the wavelet is with

this section of the signal. The larger the number C is in absolute value, the more
the similarity. This follows from the fact the CWT coefficients are calculated with
an inner product. See “Inner Products” on page 1-16 for more information on how
inner products measure similarity. If the signal energy and the wavelet energy are
equal to one, C may be interpreted as a correlation coefficient. Note that, in general,
the signal energy does not equal one and the CWT coefficients are not directly
interpretable as correlation coefficients.

As described in “Continuous and Discrete Wavelet Transforms” on page 1-10, the
CWT coefficients explicitly depend on the analyzing wavelet. Therefore, the CWT
coefficients are different when you compute the CWT for the same signal using
different wavelets.

3 Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the whole
signal.
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4 Scale (stretch) the wavelet and repeat steps 1 through 3.

5 Repeat steps 1 through 4 for all scales.
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Critically-Sampled Discrete Wavelet Transform

Calculating wavelet coefficients at every possible scale is a fair amount of work, and it
generates an awful lot of data. What if we choose only a subset of scales and positions at
which to make our calculations?

It turns out, rather remarkably, that if we choose scales and positions based on powers
of two — so-called dyadic scales and positions — then our analysis will be much more
efficient and just as accurate. We obtain such an analysis from the discrete wavelet
transform (DWT). For more information on DWT, see “Algorithms” in the Wavelet
Toolbox User's Guide.

An efficient way to implement this scheme using filters was developed in 1988 by Mallat
(see [Mal89] in “References” on page 1-83). The Mallat algorithm is in fact a classical
scheme known in the signal processing community as a two-channel subband coder (see
page 1 of the book Wavelets and Filter Banks, by Strang and Nguyen [StrN96]).

This very practical filtering algorithm yields a fast wavelet transform — a box into which
a signal passes, and out of which wavelet coefficients quickly emerge. Let's examine this
in more depth.

One-Stage Filtering: Approximations and Details

For many signals, the low-frequency content is the most important part. It is what gives
the signal its identity. The high-frequency content, on the other hand, imparts flavor or
nuance. Consider the human voice. If you remove the high-frequency components, the
voice sounds different, but you can still tell what's being said. However, if you remove
enough of the low-frequency components, you hear gibberish.

In wavelet analysis, we often speak of approximations and details. The approximations
are the high-scale, low-frequency components of the signal. The details are the low-scale,
high-frequency components.

The filtering process, at its most basic level, looks like this.
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The original signal, S, passes through two complementary filters and emerges as two
signals.

Unfortunately, if we actually perform this operation on a real digital signal, we wind
up with twice as much data as we started with. Suppose, for instance, that the original
signal S consists of 1000 samples of data. Then the resulting signals will each have 1000
samples, for a total of 2000.

These signals A and D are interesting, but we get 2000 values instead of the 1000 we
had. There exists a more subtle way to perform the decomposition using wavelets. By
looking carefully at the computation, we may keep only one point out of two in each
of the two 2000-length samples to get the complete information. This is the notion of
downsampling. We produce two sequences called cA and cD.

The process on the right, which includes downsampling, produces DWT coefficients.

To gain a better appreciation of this process, let's perform a one-stage discrete wavelet
transform of a signal. Our signal will be a pure sinusoid with high-frequency noise added
to it.

Here is our schematic diagram with real signals inserted into it.
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The MATLAB code needed to generate s, cD, and cA is

s

= sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);

[cA,cD] = dwt(s,'db2');

where db2 is the name of the wavelet we want to use for the analysis.

Notice that the detail coefficients cD are small and consist mainly of a high-frequency
noise, while the approximation coefficients cA contain much less noise than does the
original signal.

[length(cA) length(cD)]

ans =

   501  501

You may observe that the actual lengths of the detail and approximation coefficient
vectors are slightly more than half the length of the original signal. This has to do with
the filtering process, which is implemented by convolving the signal with a filter. The
convolution “smears” the signal, introducing several extra samples into the result.
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Multiple-Level Decomposition

The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower resolution
components. This is called the wavelet decomposition tree.

Looking at a signal's wavelet decomposition tree can yield valuable information.

Number of Levels

Since the analysis process is iterative, in theory it can be continued indefinitely. In
reality, the decomposition can proceed only until the individual details consist of a
single sample or pixel. In practice, you'll select a suitable number of levels based on the
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nature of the signal, or on a suitable criterion such as entropy (see “Choosing the Optimal
Decomposition” in the Wavelet Toolbox User's Guide).
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Critically-Sampled Wavelet Reconstruction

We've learned how the discrete wavelet transform can be used to analyze, or decompose,
signals and images. This process is called decomposition or analysis. The other half of
the story is how those components can be assembled back into the original signal without
loss of information. This process is called reconstruction, or synthesis. The mathematical
manipulation that effects synthesis is called the inverse discrete wavelet transform
(IDWT).

To synthesize a signal using Wavelet Toolbox software, we reconstruct it from the
wavelet coefficients.

Where wavelet analysis involves filtering and downsampling, the wavelet reconstruction
process consists of upsampling and filtering. Upsampling is the process of lengthening a
signal component by inserting zeros between samples.

The toolbox includes commands, like idwt and waverec, that perform single-level or
multilevel reconstruction, respectively, on the components of one-dimensional signals.
These commands have their two-dimensional and three-dimensional analogs, idwt2,
waverec2, idwt3, and waverec3.
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Reconstruction Filters

The filtering part of the reconstruction process also bears some discussion, because it
is the choice of filters that is crucial in achieving perfect reconstruction of the original
signal.

The downsampling of the signal components performed during the decomposition phase
introduces a distortion called aliasing. It turns out that by carefully choosing filters for
the decomposition and reconstruction phases that are closely related (but not identical),
we can “cancel out” the effects of aliasing.

A technical discussion of how to design these filters is available on page 347 of the book
Wavelets and Filter Banks, by Strang and Nguyen. The low- and high-pass decomposition
filters (L and H), together with their associated reconstruction filters (L' and H'), form a
system of what is called quadrature mirror filters:

Reconstructing Approximations and Details

We have seen that it is possible to reconstruct our original signal from the coefficients of
the approximations and details.
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It is also possible to reconstruct the approximations and details themselves from their
coefficient vectors. As an example, let's consider how we would reconstruct the first-level
approximation A1 from the coefficient vector cA1.

We pass the coefficient vector cA1 through the same process we used to reconstruct the
original signal. However, instead of combining it with the level-one detail cD1, we feed in
a vector of zeros in place of the detail coefficients vector:

The process yields a reconstructed approximation A1, which has the same length as the
original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the analogous process:

The reconstructed details and approximations are true constituents of the original signal.
In fact, we find when we combine them that
A1 + D1 = S.

Note that the coefficient vectors cA1 and cD1 — because they were produced by
downsampling and are only half the length of the original signal — cannot directly be
combined to reproduce the signal. It is necessary to reconstruct the approximations and
details before combining them.

Extending this technique to the components of a multilevel analysis, we find that similar
relationships hold for all the reconstructed signal constituents. That is, there are several
ways to reassemble the original signal:
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Wavelets From Conjugate Mirror Filters

In the section “Reconstruction Filters” on page 1-60, we spoke of the importance of
choosing the right filters. In fact, the choice of filters not only determines whether perfect
reconstruction is possible, it also determines the shape of the wavelet we use to perform
the analysis.

To construct a wavelet of some practical utility, you seldom start by drawing a waveform.
Instead, it usually makes more sense to design the appropriate quadrature mirror filters,
and then use them to create the waveform. Let's see how this is done by focusing on an
example.

Consider the low-pass reconstruction filter (L') for the db2 wavelet.

The filter coefficients can be obtained from the dbaux function. By reversing the order of
the scaling filter vector and multiplying every even element (indexing from 1) by (-1), you
obtain the high-pass filter.

Repeatedly upsampling by two and convolving the output with the scaling filter produces
the Daubechies' extremal phase wavelet.

 L = dbaux(2);

 H = wrev(L).*[1 -1 1 -1];

 HU = dyadup(H,0);

 HU = conv(HU,L);

 plot(HU); title('1st Iteration');

 H1 = conv(dyadup(HU,0),L);

 H2 = conv(dyadup(H1,0),L);

 H3 = conv(dyadup(H2,0),L);

 H4 = conv(dyadup(H3,0),L);

 figure;

 for k =1:4
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 subplot(2,2,k);

 eval(['plot(H' num2str(k) ')']);

 axis tight;

 end

The curve begins to look progressively more like the db2 wavelet. This means that the
wavelet's shape is determined entirely by the coefficients of the reconstruction filters.

This relationship has profound implications. It means that you cannot choose just any
shape, call it a wavelet, and perform an analysis. At least, you can't choose an arbitrary
wavelet waveform if you want to be able to reconstruct the original signal accurately. You
are compelled to choose a shape determined by quadrature mirror decomposition filters.

Scaling Function

We've seen the interrelation of wavelets and quadrature mirror filters. The wavelet
function ψ is determined by the high-pass filter, which also produces the details of the
wavelet decomposition.

There is an additional function associated with some, but not all, wavelets. This is the so-
called scaling function, ϕ. The scaling function is very similar to the wavelet function. It
is determined by the low-pass quadrature mirror filters, and thus is associated with the
approximations of the wavelet decomposition.

In the same way that iteratively upsampling and convolving the high-pass filter produces
a shape approximating the wavelet function, iteratively upsampling and convolving the
low-pass filter produces a shape approximating the scaling function.
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Wavelet Packet Analysis

The wavelet packet method is a generalization of wavelet decomposition that offers a
richer range of possibilities for signal analysis.

In wavelet analysis, a signal is split into an approximation and a detail. The
approximation is then itself split into a second-level approximation and detail, and
the process is repeated. For an n-level decomposition, there are n+1 possible ways to
decompose or encode the signal.

In wavelet packet analysis, the details as well as the approximations can be split.

This yields more than 2
2

1n-

 different ways to encode the signal. This is the wavelet
packet decomposition tree.

The wavelet decomposition tree is a part of this complete binary tree.

For instance, wavelet packet analysis allows the signal S to be represented as A1 + AAD3
+ DAD3 + DD2. This is an example of a representation that is not possible with ordinary
wavelet analysis.
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Choosing one out of all these possible encodings presents an interesting problem. In this
toolbox, we use an entropy-based criterion to select the most suitable decomposition of a
given signal. This means we look at each node of the decomposition tree and quantify the
information to be gained by performing each split.

Simple and efficient algorithms exist for both wavelet packet decomposition and optimal
decomposition selection. This toolbox uses an adaptive filtering algorithm, based on work
by Coifman and Wickerhauser (see [CoiW92] in “References” on page 1-83), with
direct applications in optimal signal coding and data compression.

Such algorithms allow the Wavelet Packet 1-D and Wavelet Packet 2-D tools to
include “Best Level” and “Best Tree” features that optimize the decomposition both
globally and with respect to each node.
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Wavelet Synchrosqueezing

What is Wavelet Synchrosqueezing?

The wavelet synchrosqueezed transform is a time-frequency analysis method that is
useful for analyzing multicomponent signals with oscillating modes. Examples of signals
with oscillating modes include speech waveforms, machine vibrations, and physiologic
signals. Many of these real-world signals with oscillating modes can be written as a sum
of amplitude-modulated and frequency-modulated components. A general expression for
these types of signals with summed components is

A t tk k

k

K

( ) cos( ( )),2

1

pf
=

Â

where A tk ( )  is the slowly varying amplitude and fk t( )  is the instantaneous phase. A
truncated Fourier series, where the amplitude and frequency do not vary with time, is a
special case of these signals.

The wavelet transform and other linear time-frequency analysis methods decompose
these signals into their components by correlating the signal with a time-frequency
atom chosen from a dictionary [1]. The wavelet transform uses translated and scaled
versions of a mother wavelet as its time-frequency atom. Some time-frequency spreading
is associated with all of these time-frequency atoms, which affects the sharpness of the
signal analysis.

The wavelet synchrosqueezed transform is a time-frequency method that reassigns the
signal energy in frequency. This reassignment compensates for the spreading effects
caused by the mother wavelet. Unlike other time-frequency reassignment methods,
synchrosqueezing reassigns the energy only in the frequency direction, which preserves
the time resolution of the signal. By preserving the time, the inverse synchrosqueezing
algorithm can reconstruct an accurate representation of the original signal. To use
synchrosqueezing, each term in the summed components signal expression must be an
intrinsic mode type (IMT) function. For details on the criteria that constitute IMTs, see
[2].

Algorithm

The synchrosqueezing algorithm uses these steps.
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1 Obtain the CWT of the input signal. For use with synchrosqueezing, the CWT must
use an analytic wavelet to capture instantaneous frequency information.

2 Extract the instantaneous frequencies from the CWT output, Wf , using a phase

transform, wf . This phase transform is proportional to the first derivative of the
CWT with respect to the translation, u. In this definition of the phase transform, s is
the scale.

w
p

f
f

f

s u
tW s u

iW s u
( , )

( , )

( , )
.=

∂

2

The scales are defined as s
f

f
=

c , where fc  is the peak frequency and f is the

frequency.

To extract the instantaneous frequency, consider a simple sine wave, ei f t2
0

p .

a Obtain the wavelet transform,

W e ef
i f t i f u2 2

0 0
p p( ) = ,

where ĉ sf
0( )  is the Fourier transform of the wavelet at sf0.

b Take the partial derivative of the previous equation with respect to the
translation, u:

∂

∂
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2
0 02
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pp ĉ

c Divide the partial derivative by the wavelet transform and i2p  to obtain the
instantaneous frequency, f0.

3 “Squeeze” the CWT over regions where the phase transform is constant. The
resulting instantaneous frequency value is reassigned to a single value at the
centroid of the CWT time-frequency region. This reassignment results in sharpened
output from the synchrosqueezed transform when compared to the CWT.
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As described, synchrosqueezing uses the continuous wavelet transform (CWT) and
its first derivative with respect to translation. The CWT is invertible and since the
synchrosqueezed transform inherits the CWT invertibility property, the signal can be
reconstructed.

Required Component Separation

With synchrosqueezing the signal components must be IMTs that are well separated in
the time-frequency plane. If this requirement is met, you can track the trajectory of the
instantaneous frequencies along a curve. The curves show the location of the maximum
energy as it varies over time for each signal mode. See wsstridge for a description of
the trajectory curves algorithm.

This inequality defines the required separation criteria:

f f f fk k k kt t d t t
’ ’ ’ ’( ) ( ) ( ) ( ) ,- ≥ +- -1 1

where f ’  is the instantaneous frequency and d is a positive separation constant [2]. To
determine this required separation, suppose a bump wavelet, x, has a Fourier transform
with support in the range e e

x x
- +[ ]D D, . Because the bump wavelet has a center

frequency of 5

2p

 Hz, use 5

2

1

2
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2
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1

4
 for the bump wavelet.

To show this separation requirement for the bump wavelet, consider a signal composed
of cos( ( . )) sin(( ( . ))2 0 1 2 0 2p pt t+ . Using the bump wavelet to obtain the CWT, the
instantaneous phase of the cosine is f1 0 1( ) .t t= , and the instantaneous frequency is the
first derivative, 0.1. Likewise, for the sine component, the instantaneous frequency is 0.2.

The separation inequality, 0 1
1

4
0 3. .≥ , is true. Therefore, the two signal components are

IMT functions and are separated enough to use the synchrosqueezed transform.

If you use higher frequencies, such as 0.3 and 0.4 for the instantaneous frequencies, the

inequality is 0 1
1

4
0 7. .≥ , which is not true. Because these signal components are not
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well-separated IMTs the signal, cos( ( . )) sin(( ( . ))2 0 3 2 0 4p pt t+ , is not appropriate for use
with the synchrosqueezed transform.

Examples

CWT vs. Synchrosqueezed Transform Smearing

Comparing the CWT with the synchrosqueezed transform of a quadratic chirp shows
reduced energy smearing for the synchrosqueezed transform result.
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Low-Frequency vs. High-Frequency Component Separation

This example shows the separation needed between signal components to obtain usable
results from the synchrosqueezed transform. The signal components are 0.025, 0.05,
0.20, and 0.225 cycles per sample. The high- frequency components, 0.20 and 0.225, do
not have not enough separation, so you cannot express the whole signal a sum of well-
separated IMTs.

Define the signal and plot the synchrosqueezed components.

t = 0:2000;

x1 = cos(2*pi*.025*t);

x2 = cos(2* pi*.05*t);

x3 = cos(2*pi*.20*t);

x4 = cos(2*pi*.225*t);

x =x1+x2+x3+x4;

[sst,f] = wsst(x);

contour(t,f,abs(sst));

xlabel('Time');

ylabel('Normalized Frequency');

title('Inadequate High-Frequency Separation')
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Increase the separation of the high-frequency components, and then plot the
synchrosqueezed components again.

x4 = cos(2*pi*.3*t);

x =x1+x2+x3+x4;

[sst,f] = wsst(x);

contour(t,f,abs(sst));

xlabel('Time');

ylabel('Normalized Frequency');

title('Adequate High-Frequency Separation')
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All the signal components are now well-separated IMTs and are separated enough to
distinguish from each other. This signal is appropriate for use with the synchrosqueezing
algorithm.

Region with Inadequate Separation

This example shows a signal with two linear chirps. A linear chirp is defined as

f t f t
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Ê
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Its first derivative, f mt
0

+ , defines the instantaneous frequency line. Use the bump
wavelet and its separation constant of 0.25. To determine the region where the two chirp
signals with instantaneous frequencies of 0.4 and 0.1 cycles per sample are not separated
enough, solve this equation:

y y y y
1 2 1 2

0 25- = +.

y x
1

0 15

1000
0 4=

-
+

.
.  and y x

2

0 15

1000
0 1= +

.
.  are the instantaneous frequency lines of the

chirps.

t = 0:2000;

y1 = chirp(t,0.4,1000,0.25);

y2 = chirp(t,0.1,1000,0.25);

y = y1+y2;

wsst(y,'bump')

xlabel('Samples');

h1 = line([583 583], [0 0.5]);

h2 = line([1417 1417], [0 0.5]);

h1.Color='white';

h2.Color='white';
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The vertical lines are the bounds of the region . They indicate that not enough separation
occurs at sample 583 and sample 1417. In the region between the vertical lines, the
signal does not consist of well-separated IMTs. In the regions outside the vertical
lines, the signal has well-separated IMTs. You can obtain good results from the
synchrosqueezed transform in these regions.
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Introduction to Wavelet Families

Several families of wavelets that have proven to be especially useful are included in this
toolbox. What follows is an introduction to some wavelet families.

• “Haar” on page 1-77
• “Daubechies” on page 1-77
• “Biorthogonal” on page 1-78
• “Coiflets” on page 1-80
• “Symlets” on page 1-80
• “Morlet” on page 1-80
• “Mexican Hat” on page 1-81
• “Meyer” on page 1-81
• “Other Real Wavelets” on page 1-82
• “Complex Wavelets” on page 1-82

To explore all wavelet families on your own, check out the Wavelet Display tool:

1 Type wavemenu at the MATLAB command line. The Wavelet Toolbox Main Menu
appears.



 Introduction to Wavelet Families

1-77

2 Click the Wavelet Display menu item. The Wavelet Display tool appears.
3 Select a family from the Wavelet menu at the top right of the tool.
4 Click the Display button. Pictures of the wavelets and their associated filters

appear.
5 Obtain more information by clicking the information buttons located at the right.

Haar

Any discussion of wavelets begins with Haar wavelet, the first and simplest. The Haar
wavelet is discontinuous, and resembles a step function. It represents the same wavelet
as Daubechies db1.

Daubechies

Ingrid Daubechies, one of the brightest stars in the world of wavelet research, invented
what are called compactly supported orthonormal wavelets — thus making discrete
wavelet analysis practicable.

The names of the Daubechies family wavelets are written dbN, where N is the order, and
db the “surname” of the wavelet. The db1 wavelet, as mentioned above, is the same as
Haar wavelet. Here are the wavelet functions psi of the next nine members of the family:
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You can obtain a survey of the main properties of this family by typing waveinfo('db')
from the MATLAB command line. See “Daubechies Wavelets: dbN” in the Wavelet
Toolbox User's Guide for more detail.

Biorthogonal

This family of wavelets exhibits the property of linear phase, which is needed for signal
and image reconstruction. By using two wavelets, one for decomposition (on the left
side) and the other for reconstruction (on the right side) instead of the same single one,
interesting properties are derived.
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You can obtain a survey of the main properties of this family by typing
waveinfo('bior') from the MATLAB command line. See “Biorthogonal Wavelet Pairs:
biorNr.Nd” in the Wavelet Toolbox User's Guide for more detail.
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Coiflets

Built by I. Daubechies at the request of R. Coifman. The wavelet function has 2N
moments equal to 0 and the scaling function has 2N-1 moments equal to 0. The two
functions have a support of length 6N-1. You can obtain a survey of the main properties
of this family by typing waveinfo('coif') from the MATLAB command line. See
“Coiflet Wavelets: coifN” in the Wavelet Toolbox User's Guide for more detail.

Symlets

The symlets are nearly symmetrical wavelets proposed by Daubechies as modifications
to the db family. The properties of the two wavelet families are similar. Here are the
wavelet functions psi.

You can obtain a survey of the main properties of this family by typing
waveinfo('sym') from the MATLAB command line. See “Symlet Wavelets: symN” in
the Wavelet Toolbox User's Guide for more detail.

Morlet

This wavelet has no scaling function, but is explicit.
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You can obtain a survey of the main properties of this family by typing
waveinfo('morl') from the MATLAB command line. See “Morlet Wavelet: morl” in the
Wavelet Toolbox User's Guide for more detail.

Mexican Hat

This wavelet has no scaling function and is derived from a function that is proportional to
the second derivative function of the Gaussian probability density function.

You can obtain a survey of the main properties of this family by typing
waveinfo('mexh') from the MATLAB command line. See “Mexican Hat Wavelet:
mexh” in the Wavelet Toolbox User's Guide for more information.

Meyer

The Meyer wavelet and scaling function are defined in the frequency domain.
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You can obtain a survey of the main properties of this family by typing
waveinfo('meyer') from the MATLAB command line. See “Meyer Wavelet: meyr” in
the Wavelet Toolbox User's Guide for more detail.

Other Real Wavelets

Some other real wavelets are available in the toolbox:

• Reverse Biorthogonal
• Gaussian derivatives family
• FIR based approximation of the Meyer wavelet

See “Additional Real Wavelets” in the Wavelet Toolbox User's Guide for more
information.

Complex Wavelets

Some complex wavelet families are available in the toolbox:

• Gaussian derivatives
• Morlet
• Frequency B-Spline
• Shannon

See “Complex Wavelets” in the Wavelet Toolbox User's Guide for more information.
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2

Using Wavelets

This chapter takes you step-by-step through examples that teach you how to use the
graphical tools and command-line functions.

• “Introduction to Wavelet Toolbox GUIs and Functions” on page 2-2
• “Wavelets: Working with Images” on page 2-3
• “One-Dimensional Wavelet Density Estimation” on page 2-10
• “Interactive 1-D Wavelet Coefficient Selection” on page 2-15
• “Interactive 2-D Wavelet Coefficient Selection” on page 2-24
• “One-Dimensional Extension” on page 2-30
• “Two-Dimensional Extension” on page 2-37
• “Image Fusion” on page 2-40
• “One-Dimensional Fractional Brownian Motion Synthesis” on page 2-48
• “New Wavelet for CWT” on page 2-54
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Introduction to Wavelet Toolbox GUIs and Functions

Wavelet Toolbox software contains graphical tools and command-line functions that let
you

• Examine and explore properties of individual wavelets and wavelet packets
• Examine statistics of signals and signal components
• Perform a continuous wavelet transform of a one-dimensional signal
• Perform discrete analysis and synthesis of one- and two-dimensional signals
• Perform wavelet packet analysis of one- and two-dimensional signals
• Compress and remove noise from signals and images

In addition to the above, the toolbox makes it easy to customize the presentation and
visualization of your data. You choose

• Which signals to display
• A region of interest to magnify
• A coloring scheme for display of wavelet coefficient details

Note All the graphical user interface tools described in this chapter let you import
information from and export information to either the disk or workspace.
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Wavelets: Working with Images
This section provides additional information about working with images in the Wavelet
Toolbox software. It describes the types of supported images and how the MATLAB
environment represents them, as well as techniques for analyzing color images.

Understanding Images in the MATLAB Environment

The basic data structure in MATLAB is the rectangular matrix, an ordered set of real or
complex elements. This object is naturally suited to the representation of images, which
are real-valued, ordered sets of color or intensity data. (This toolbox does not support
complex-valued images.)

The word pixel is derived from picture element and usually denotes a single dot on a
computer display, or a single element in an image matrix. You can select a single pixel
from an image matrix using normal matrix subscripting. For example:

I(2,15)

returns the value of the pixel at row 2 and column 15 of the image I. By default,
MATLAB scales images to fill the display axes; therefore, an image pixel may use more
than a single pixel on the screen.

Indexed Images

A typical color image requires two matrices: a colormap and an image matrix. The
colormap is an ordered set of values that represent the colors in the image. For each
image pixel, the image matrix contains a corresponding index into the colormap. (The
elements of the image matrix are floating-point integers, or flints, which MATLAB stores
as double-precision values.)

The size of the colormap matrix is n-by-3 for an image containing n colors. Each row of
the colormap matrix is a 1-by-3 red, green, blue (RGB) color vector

color = [R G B]

that specifies the intensity of the red, green, and blue components of that color. R, G, and
B are real scalars that range from 0.0 (black) to 1.0 (full intensity). MATLAB translates
these values into display intensities when you display an image and its colormap.

When MATLAB displays an indexed image, it uses the values in the image matrix to look
up the desired color in the colormap. For instance, if the image matrix contains the value
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18 in matrix location (86,198), the color for pixel (86,198) is the color from row 18 of the
colormap.

Outside MATLAB, indexed images with n colors often contain values from 0 to n–
1. These values are indices into a colormap with 0 as its first index. Since MATLAB
matrices start with index 1, you must increment each value in the image, or shift up the
image, to create an image that you can manipulate with toolbox functions.

Wavelet Decomposition of Indexed Images

Indexed images can be thought of as scaled intensity images, with matrix elements
containing only integers from 1 to n, where n is the number of discrete shades in the
image.

If the colormap is not provided, the graphical user interface tools display the image and
processing results using a monotonic colormap with max(max(X))-min(min(X))+1
colors.
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Since the image colormap is only used for display purposes, some indexed images may
need to be preprocessed to achieve the correct results from the wavelet decomposition.

In general, color indexed images do not have linear, monotonic colormaps and need to
be converted to the appropriate gray-scale indexed image before performing a wavelet
decomposition.

How Decompositions Are Displayed

Note that the coefficients, approximations, and details produced by wavelet
decomposition are not indexed image matrices.

To display these images in a suitable way, the graphical user interface tools follow these
rules:

• Reconstructed approximations are displayed using the colormap map.
• The coefficients and the reconstructed details are displayed using the colormap map

applied to a rescaled version of the matrices.

RGB (Truecolor) Images

An RGB image, sometimes referred to as a truecolor image, is stored in MATLAB as
an m-by-n-by-3 data array that defines red, green, and blue color components for each
individual pixel. RGB images do not use a palette. The color of each pixel is determined
by the combination of the red, green, and blue intensities stored in each color plane at the
pixel's location. Graphics file formats store RGB images as 24-bit images, where the red,
green, and blue components are 8 bits each. This yields a potential of 16 million colors.

The precision with which a real-life image can be replicated led to the nickname
“truecolor image.” An RGB MATLAB array can be of class double, single, uint8, or
uint16. In an RGB array of class double, each color component is a value between 0
and 1.

The color components of an 8-bit RGB image are integers in the range [0, 255] rather
than floating-point values in the range [0, 1].

Wavelet Decomposition of Truecolor Images

The truecolor images analyzed are m-by-n-by-3 arrays of uint8. Each of the three-
color components is a matrix that is decomposed using the two-dimensional wavelet
decomposition scheme.
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Other Images

Wavelet Toolbox software lets you work with some other types of images. Using the
imread function, the various tools using images try to load indexed images from files
that are not MAT files (for example, PCX files).

These tools are:

• Two-Dimensional Discrete Wavelet Analysis
• Two-Dimensional Wavelet Packet Analysis
• Two-Dimensional Stationary Wavelet Analysis
• Two-Dimensional Extension tool

For more information on the supported file types, type help imread.

Use the imfinfo function to find the type of image stored in the file. If the file does not
contain an indexed image, the load operation fails.

Image Conversion

Image Processing Toolbox software provides a comprehensive set of functions that let
you easily convert between image types. If you do not have Image Processing Toolbox
software, the examples below demonstrate how this conversion may be performed using
basic MATLAB commands.

Example 1: Converting Color Indexed Images

load xpmndrll 

whos 

Name Size Bytes Class

X2 192x200 307200 double array

map 64x3 1536 double array

image(X2)

title('Original Color Indexed Image') 

colormap(map); colorbar
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The color bar to the right of the image is not smooth and does not monotonically
progress from dark to light. This type of indexed image is not suitable for direct wavelet
decomposition with the toolbox and needs to be preprocessed.

First, separate the color indexed image into its RGB components:

R = map(X2,1); R = reshape(R,size(X2));

G = map(X2,2); G = reshape(G,size(X2));

B = map(X2,3); B = reshape(B,size(X2));

Next, convert the RGB matrices into a gray-scale intensity image, using the standard
perceptual weightings for the three-color components:

Xrgb = 0.2990*R + 0.5870*G + 0.1140*B;

Then, convert the gray-scale intensity image back to a gray-scale indexed image with 64
distinct levels and create a new colormap with 64 levels of gray:

n = 64;            % Number of shades in new indexed image 

X = round(Xrgb*(n-1)) + 1; 

map2 = gray(n); 

figure 

image(X), title('Processed

Gray Scale Indexed Image') 
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colormap(map2), colorbar

The color bar of the converted image is now linear and has a smooth transition from dark
to light. The image is now suitable for wavelet decomposition.

Finally, save the converted image in a form compatible with the Wavelet Toolbox
graphical user interface:

baboon = X; 

map = map2; 

save baboon baboon map

Example 2: Converting an RGB TIF Image

Suppose the file myImage.tif contains an RGB image (noncompressed) of size S1xS2.
Use the following commands to convert this image:

A = imread('myImage.tif');  

% A is an S1xS2x3 array of uint8.  

A = double(A);

Xrgb  = 0.2990*A(:,:,1) + 0.5870*A(:,:,2) + 0.1140*A(:,:,3); 

NbColors = 255; 

X = wcodemat(Xrgb,NbColors); 
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map = pink(NbColors);

The same program can be used to convert BMP or JPEG files.
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One-Dimensional Wavelet Density Estimation

This section takes you through the features of one-dimensional wavelet density
estimation using one of the Wavelet Toolbox specialized tools.

The toolbox provides a graphical interface tool to estimate the density of a sample and
complement well known tools like the histogram (available from the MATLAB core) or
kernel based estimates.

For the examples in this section, switch the extension mode to symmetric padding, using
the command

dwtmode('sym')

One-Dimensional Estimation Using the Graphical Interface

1 Start the Density Estimation 1-D Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.
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Click the Density Estimation 1-D menu item. The discrete wavelet analysis tool
for one-dimensional density estimation appears.

2 Load data.

From the File menu, choose the Load > Data for Density Estimate option.

When the Load data for Density Estimate dialog box appears, select the MAT-file
ex1cusp1.mat from the MATLAB folder toolbox/wavelet/wavedemo. Click OK.
The noisy cusp data is loaded into the Density Estimation 1-D tool.

The sample, a 64-bin histogram, and the processed data obtained after a binning
are displayed. In this example, we'll accept the default value for the number of
bins (250). The binned data, suitably normalized, will be processed by wavelet
decomposition.

3 Perform a Wavelet Decomposition of the binned data.
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Select the sym6 wavelet from the Wavelet menu and select 4 from the Level menu,
and click the Decompose button. After a pause for computation, the tool displays
the detail coefficients of the decomposition of the binned data.

4 Perform a density estimation.

Accept the defaults of global soft thresholding. The sliders located on the right of
the window control the level dependent thresholds, indicated by yellow dotted lines
running horizontally through the graphs on the left of the window.

Continue by clicking the Estimate button.

You can see that the estimation process delivers a very irregular resulting density.
The density estimate (in yellow) is the normalized sum of the signals located below
it: the approximation a4 and the reconstructed details after coefficient thresholding.

5 Perform thresholding.

You can experiment with the various predefined thresholding strategies by selecting
the appropriate options from the menu located on the right of the window or directly
by dragging the yellow lines with the left mouse button. Let's try another estimation
method.

From the menu Select thresholding method, select the item By level threshold
2. Next, click the Estimate button.
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The estimated density is more satisfactory. It correctly identifies the smooth part of
the density and the cusp at 0.7.

Importing and Exporting Information from the Graphical Interface

The tool lets you save the estimated density to disk. The toolbox creates a MAT-file in the
current folder with a name you choose.

To save the estimated density, use the menu option File > Save Density. A dialog box
appears that lets you specify a folder and filename for storing the density. Type the name
dex1cusp. After saving the density data to the file dex1cusp.mat, load the variables
into your workspace:

load dex1cusp 

whos

Name Size Bytes Class

thrParams 1x4 464 cell array

wname 1x4 8 char array

xdata 1x250 2000 double array

ydata 1x250 2000 double array
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The estimated density is given by xdata and ydata. The length of these vectors is of
the same as the number of bins you choose in step 4. In addition, the parameters of the
estimation process are given by the wavelet name in wname.

wname

wname = 

    sym6

and the level dependent thresholds contained in thrParams, which is a cell array of
length 4 (the level of the decomposition). For i from 1 to 4, thrParams{i} contains the
lower and upper bounds of the interval of thresholding and the threshold value (since
interval dependent thresholds are allowed). For more information, see “One-Dimensional
Adaptive Thresholding of Wavelet Coefficients”. For example, for level 1,

thrParams{1}

ans = 

    0.0560    0.9870    2.1179

Note When you load data from a file using the menu option File > Load Data for
Density Estimate, the first one-dimensional variable encountered in the file is
considered the signal. Variables are inspected in alphabetical order.

At the end of this section, turn the extension mode back to zero padding using

dwtmode('zpd')
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Interactive 1-D Wavelet Coefficient Selection

This section takes you through the features of one-dimensional selection of wavelet
coefficients using one of the Wavelet Toolbox specialized tools. The toolbox provides a
graphical interface tool to explore some reconstruction schemes based on various wavelet
coefficients selection strategies:

• Global selection of biggest coefficients (in absolute value)
• By level selection of biggest coefficients
• Automatic selection of biggest coefficients
• Manual selection of coefficients

For this section, switch the extension mode to symmetric padding using the command

dwtmode('sym')

1 Start the Wavelet Coefficients Selection 1-D Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.
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Click the Wavelet Coefficients Selection 1-D menu item. The discrete wavelet
coefficients selection tool for one-dimensional signals appears.

2 Load data.

From the File menu, choose the Load Signal option.

When the Load Signal dialog box appears, select the MAT-file noisbump.mat,
which should reside in the MATLAB folder toolbox/wavelet/wavedemo. Click
the OK button. The noisy bumps data is loaded into the Wavelet Coefficients
Selection 1-D tool.

3 Perform a Wavelet Decomposition.

Select the db3 wavelet from the Wavelet menu and select 6 from the Level menu,
and then click the Analyze button.
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The tool displays below the original signal (on the left) its wavelet decomposition:
the approximation coefficients A6 and detail coefficients from D6 at the top to D1 at
the bottom. In the middle of the window, below the synthesized signal (which at this
step is the same, since all the wavelet coefficients are kept) it displays the selected
coefficients.

Selecting Biggest Coefficients Globally

On the right of the window, find a column labeled Kept. The last line shows
the total number of coefficients: 1049. This is a little bit more than the number
of observations, which is 1024. You can choose the number of selected biggest
coefficients by typing a number instead of 1049 or by using the slider. Type 40 and
press Enter. The numbers of selected biggest coefficients level by level are updated
(but cannot be modified since Global is the current selection method). Then click the
Apply button. The resulting coefficients are now displayed.
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In the previous trial, the approximation coefficients were all kept. It is possible
to relax this constraint by selecting another option from the App. cfs menu
(Approximation Coefficients abbreviation). Choose the Unselect option and click the
Apply button.
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None of the approximation coefficients are kept.

From the App. cfs menu, select the Selectable option. Type 80 for the number of
selected biggest coefficients and press Enter. Then, click the Apply button.

Some of the approximation coefficients (15) have been kept.

Selecting Biggest Coefficients by Level

From the Define Selection method menu, select the By Level option. You can
choose the number of selected biggest coefficients by level or select it using the
sliders. Type 4 for the approximation and each detail, and then click the Apply
button.
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Selecting Coefficients Manually

From the Define Selection method menu, select the Manual option. The tool
displays on the left part, below the original signal, its wavelet decomposition. At
the beginning, no coefficients are kept so no selected coefficient is visible and the
synthesized signal is null.
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Select 16 coefficients individually by double clicking each of them using the left
mouse button. The color of selected coefficients switches from green to yellow for the
details and from blue to yellow for the approximation, which appear on the left of the
window and appear in yellow on the middle part. Click the Apply button.
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You can deselect the currently selected coefficients by double clicking each of them.
Another way to select or deselect a set of coefficients is to use the selection box. Drag
a rubber band box (hold down the left mouse button) over a portion of the coefficient
axes (original or selected) containing all the currently selected coefficients. Click the
Unselect button located on the right of the window. Click the Apply button. The
tool displays the null signal again.

Note that when the coefficients are very close, it is easier to zoom in before selecting
or deselecting them.

Drag a rubber band box over the portion of the coefficient axes around the position
800 and containing all scales and click the Select button. Click the Apply button.

This illustrates that wavelet analysis is a local analysis since the signal is perfectly
reconstructed around the position 800. Check the Show Original Signal to magnify
it.

Selecting Coefficients Automatically

From the Define Selection method menu, select the Stepwise movie option. The
tool displays the same initial window as in the manual selection mode, except for the
left part of it.
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Let's perform the stepwise movie using the k biggest coefficients, from k = 1 to k =
31 in steps of 1, click the Start button. As soon as the result is satisfactory, click the
Stop button.

4 Save the synthesized signal.

The tool lets you save the synthesized signal to disk. The toolbox creates a MAT-file
in the current folder with a name you choose.

To save the synthesized signal from the present selection, use the menu option File
> Save Synthesized Signal. A dialog box appears that lets you specify a folder and
filename for storing the signal and the wavelet name.

At the end of this section, turn back the extension mode to zero padding using the
command

dwtmode('zpd')



2 Using Wavelets

2-24

Interactive 2-D Wavelet Coefficient Selection

This section takes you through the features of two-dimensional selection of wavelet
coefficients using one of the Wavelet Toolbox specialized tools. The toolbox provides a
graphical interface tool to explore some reconstruction schemes based on various wavelet
coefficient selection strategies:

• Global selection of biggest coefficients (in absolute value)
• By level selection of biggest coefficients
• Automatic selection of biggest coefficients.

This section will be short since the functionality are similar to the one-dimensional ones
examined in the previous section.

For this section, switch the extension mode to symmetric padding using the command

dwtmode('sym')

1 Start the Wavelet Coefficients Selection 2-D Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.
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Click the Wavelet Coefficients Selection 2-D menu item. The discrete wavelet
coefficients selection tool for images appears.
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2 Load data.

From the File menu, choose the Load Image option.

When the Load Image dialog box appears, select the MAT-file noiswom.mat, which
should reside in the MATLAB folder toolbox/wavelet/wavedemo. Click the NO to
load the grayscale image.

3 Perform a Wavelet Decomposition.

Select the sym4 wavelet from the Wavelet menu and select 4 from the Level menu,
and then click the Analyze button.

The tool displays its wavelet decomposition below the original image (on the left).
The selected coefficients are displayed in the middle of the window, below the
synthesized image (which, at this step, is the same since all the wavelet coefficients
are kept). There are 11874 coefficients, a little bit more than the original image
number of pixels, which is 96x96 = 9216.

Note The difference between 9216 and 11874 comes from the extra coefficients
generated by the redundant DWT using the current extension mode (symmetric,
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'sym'). Because 96 is divisible by 24 = 16, using the periodic extension mode ('per')
for the DWT, you obtain for each level the minimum number of coefficients. More
precisely, if you type dwtmode('per') and repeat steps 2 to 5, you obtain 9216
coefficients.

Selecting Biggest Coefficients Globally

On the right of the window, find a column labeled Kept. The last line shows the
total number of coefficients: 11874. This is a little bit more than the original image
number of pixels. You can choose the number of selected biggest coefficients by
typing a number instead of 11874, or by using the slider. Type 1100 and press
Enter. The numbers of selected biggest coefficients level by level are updated (but
cannot be modified, since Global is the current selection method).

Then click the Apply button.



2 Using Wavelets

2-28

In the previous operation, all the approximation coefficients were kept. It is possible
to relax this constraint by selecting another option from the App. cfs menu (see
“Interactive 1-D Wavelet Coefficient Selection” on page 2-15).

Selecting Biggest Coefficients by Level

Selecting Biggest Coefficients by Level. From the Define Selection method
menu, select the By Level option. You can choose the number of selected biggest
coefficients by level, or select it using the sliders. Type 100 for each detail, and then
click the Apply button.

Selecting Coefficients Automatically

From the Define Selection method menu, select the Stepwise movie option.
The tool displays its wavelet decomposition on the left, below the original image. At
the beginning, no coefficients are kept so the synthesized image is null. Perform the
stepwise movie using the k biggest coefficients, from k = 144 to k = 1500, in steps
of 20. Click the Start button. As soon as the result is satisfactory, click the Stop
button.
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We've stopped the movie at 864 coefficients (including the number of approximation
coefficients).

4 Save the synthesized image.

This tool lets you save the synthesized image to disk. The toolbox creates a MAT-file
in the current folder with a name you choose.

To save the synthesized image from the present selection, use the menu option File
> Save Synthesized Image. A dialog box appears that lets you specify a folder and
filename for storing the image and, in addition, the colormap and the wavelet name.

At the end of this section, turn back the extension mode to zero padding using the
command

dwtmode('zpd')
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One-Dimensional Extension

This section takes you through the features of one-dimensional extension or truncation
using one of the Wavelet Toolbox utilities.

One-Dimensional Extension Using the Command Line

The function wextend performs signal extension. For more information, see its reference
page.

One-Dimensional Extension Using the Graphical Interface

1 Start the Signal Extension Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

Click the Signal Extension menu item.
2 Load data.
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From the File menu, choose the Load Signal option.

When the Load Signal dialog box appears, select the MAT-file noisbloc.mat,
which should reside in the MATLAB folder toolbox/wavelet/wavedemo. Click the
OK button. The noisy blocks data is loaded into the Signal Extension tool.

3 Extend the signal.

Enter 1300 in the Desired Length box of the extended signal, and select the Left
option from the Direction to extend menu. Then accept the default Symmetric for
the Extension mode, and click the Extend button.
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The tool displays the original signal delimited by a red box and the transformed
signal delimited by a yellow box. The signal has been extended by left symmetric
boundary values replication.

Select the Both option from the Direction to extend menu and select the
Continuous option from the Extension mode menu. Click the Extend button.
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The signal is extended in both directions by replicating the first value to the left and
the last value to the right, respectively.

Extending Signal for SWT

Since the decomposition at level k of a signal using SWT requires that 2^k divides evenly
into the length of the signal, the tool provides a special option dedicated to this kind of
extension.

Select the For SWT option from the Extension mode menu. Click the Extend button.
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Since the signal is of length 1024 = 2^10, no extension is needed so the Extend button
is ineffective.

From the File menu, choose the Example Extension option and select the last item of
the list.
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Since the signal is of length 1000 and the decomposition level needed for SWT is 10, the
tool performs a minimal right periodic extension. The extended signal is of length 1024.

Select 4 from the SWT Decomposition Level menu, and then click the Extend button.
The tool performs a minimal right periodic extension leading to an extended signal of
length 1008 (because 1008 is the smallest integer greater than 1000 divisible by 2^4 =
16).

Select 2 from the SWT Decomposition Level menu. Since 1000 is divisible by 4, no
extension is needed.

Truncating Signal

The same tool allows you to truncate a signal.

Since truncation is not allowed for the special mode For SWT, select the Periodic option
from the Extension mode menu. Type 900 for the desired length and press Enter.
Click the Truncate button.
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The tool displays the original signal delimited by a red box and the truncated signal
delimited by a yellow box. The signal has been truncated by deleting 100 values on the
right side.

Importing and Exporting Information from the Graphical Interface

This tool lets you save the transformed signal to disk. The toolbox creates a MAT-file in
the current folder with a name you choose.

To save the transformed signal, use the menu option File > Save Transformed Signal.
A dialog box appears that lets you specify a folder and filename for storing the image.
Type the name tfrqbrk. After saving the signal data to the file tfrqbrk.mat, load the
variable into your workspace:

load tfrqbrk 

whos 

Name Size Bytes Class

tfrqbrk 1x900 7200 double array
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Two-Dimensional Extension

This section takes you through the features of two-dimensional extension or truncation
using one of the Wavelet Toolbox utilities. This section is short since it is very similar to
“One-Dimensional Extension” on page 2-30.

Two-Dimensional Extension Using the Command Line

The function wextend performs image extension. For more information, see its reference
page.

Two-Dimensional Extension Using the Graphical Interface

1 Start the Image Extension Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

Click the Image Extension menu item.
2 Extend (or truncate) the image.
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From the File menu, choose the Example Extension option and select the first
item of the list.

The tool displays the original image delimited by a red box and the transformed
image delimited by a yellow box. The image has been extended by zero padding.
The right part of the window allows you to control the parameters of the extension/
truncation process for the vertical and horizontal directions, respectively. The
possibilities are similar to the one-dimensional ones described in “One-Dimensional
Extension” on page 2-30.

To see some more extension cases, look at the examples of the toolbox (using the
wavedemo command).

Importing and Exporting Information from the Graphical Interface

This tool lets you save the transformed image to disk. The toolbox creates a MAT-file in
the current folder with a name you choose.

To save the transformed image, use the menu option File > Save Transformed Image.
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A dialog box appears that lets you specify a folder and filename for storing the image.
Type the name woman2. After saving the image data to the file woman2.mat, load the
variable into your workspace:

load woman2 

whos

Name Size Bytes Class

woman2 200x220 352000 double array

map 253x3 6120 double array

The transformed image is stored together with its colormap.
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Image Fusion
This section takes you through the features of Image Fusion, one of the Wavelet Toolbox
specialized tools.

For the examples in this section, switch the extension mode to symmetric padding, using
the command:

dwtmode('sym')

The toolbox requires only one function for image fusion: wfusimg. You'll find full
information about this function in its reference page. For more details on fusion methods
see the wfusmat function.

In this section, you'll learn how to

• Load images
• Perform decompositions
• Merge images from their decompositions
• Restore images from their decompositions
• Save image after fusion

Since you can perform analyses either from the command line or using the graphical
interface tools, this section has subsections covering each method.

The principle of image fusion using wavelets is to merge the wavelet decompositions of
the two original images using fusion methods applied to approximations coefficients and
details coefficients (see [MisMOP03] and [Zee98] in “References” on page 1-83).

The two images must be of the same size and are supposed to be associated with indexed
images on a common colormap (see wextend to resize images).

Two examples are examined: the first one merges two different images leading to a new
image and the second restores an image from two fuzzy versions of an original image.

Image Fusion Using the Command Line

Example 1: Fusion of Two Different Images

1 Load two original images: a mask and a bust.

load mask; X1 = X;
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load bust; X2 = X;

2 Merge the two images from wavelet decompositions at level 5 using db2 by taking
two different fusion methods: fusion by taking the mean for both approximations and
details,

XFUSmean = wfusimg(X1,X2,'db2',5,'mean','mean');

and fusion by taking the maximum for approximations and the minimum for the
details.

XFUSmaxmin = wfusimg(X1,X2,'db2',5,'max','min');

3 Plot original and synthesized images.

colormap(map);

subplot(221), image(X1), axis square, title('Mask') 

subplot(222), image(X2), axis square, title('Bust') 

subplot(223), image(XFUSmean), axis square,  

title('Synthesized image, mean-mean') 

subplot(224), image(XFUSmaxmin), axis square,  

title('Synthesized image, max-min')

Example 2: Restoration by Fusion from Fuzzy Images

1 Load two fuzzy versions of an original image.
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load cathe_1; X1 = X; 

load cathe_2; X2 = X;

2 Merge the two images from wavelet decompositions at level 5 using sym4 by taking
the maximum of absolute value of the coefficients for both approximations and
details.

XFUS = wfusimg(X1,X2,'sym4',5,'max','max');

3 Plot original and synthesized images.

colormap(map);

subplot(221), image(X1), axis square,  

title('Catherine 1') 

subplot(222), image(X2), axis square,  

title('Catherine 2') 

subplot(223), image(XFUS), axis square,  

title('Synthesized image')

The synthesized image is a restored version of good quality of the common
underlying original image.

Image Fusion Using the Graphical Interface

1 Start the Image Fusion Tool.
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From the MATLAB prompt, type

wavemenu

to display the Wavelet Toolbox Main Menu and then click the Image Fusion
menu item to display the Image Fusion Tool.
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2 Load original images.

From the File menu, choose the Load Image 1 option.

When the Load Image 1 dialog box appears, select the MAT-file mask.mat, which
should reside in the MATLAB folder toolbox/wavelet/wavedemo. Click NO to
load as a grayscale image.

Perform the same sequence choosing the Load Image 2 option and selecting the
MAT-file bust.mat. Click NO to load as a grayscale image.

3 Perform wavelet decompositions.

Using the Wavelet and Level menus located to the upper right, determine the
wavelet family, the wavelet type, and the number of levels to be used for the
analysis.

For this analysis, select the db2 wavelet at level 5.

Click the Decompose button.

After a pause for computation, the tool displays the two analyses.
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4 Merge two images from their decompositions.

From Select Fusion Method frame, select the item mean for both Approx. and
Details. Next, click the Apply button.
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The synthesized image and its decomposition (which is equal to the fusion of the two
decompositions) appear. The new image produced by fusion clearly exhibits features
from the two original ones.

Let us now examine another example illustrating restoration using image fusion.
5 Restore the image using image fusion.

From the File menu, load Image 1 by selecting the MAT-file cathe_1.mat, and
Image 2 by selecting the MAT-file cathe_2.mat.

6 Using the Wavelet and Level menus, select the sym4 wavelet at level 5. Click the
Decompose button.

7 From Select Fusion Method frame, select the item max for both Approx. and
Details. Next, click the Apply button.
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The synthesized image is a restored version of good quality of the common
underlying original image.

Saving the Synthesized Image

The Image Fusion Tool lets you save the synthesized image to disk. The toolbox creates a
MAT-file in the current folder with a name you choose.

To save the synthesized image from the present selection, use the menu option File >
Save Synthesized Image.

A dialog box appears that lets you specify a folder and filename for storing the image.
After you save the image data to the file rescathe.mat, the synthesized image is given
by X and the colormap by map.
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One-Dimensional Fractional Brownian Motion Synthesis

This section takes you through the features of One-Dimensional Fractional Brownian
Motion Synthesis using one of the Wavelet Toolbox specialized tools.

For the examples in this section, switch the extension mode to symmetric padding, using
the command

dwtmode('sym')

The toolbox requires only one function to generate a fractional Brownian motion signal:
wfbm. You'll find full information about this function in its reference page.

In this section, you'll learn how to

• Generate a fractional Brownian motion signal
• Look at its main properties
• Save the synthesized signal

Since you can perform the generation either from the command line or using the
graphical interface tools, this section has subsections covering each method.

A fractional Brownian motion (fBm) is a continuous-time Gaussian process depending
on the Hurst parameter 0 < H < 1. It generalizes the ordinary Brownian motion
corresponding to H = 0.5 and whose derivative is the white noise. The fBm is self-
similar in distribution and the variance of the increments is given by

Var(fBm(t)-fBm(s)) = v |t-s|^(2H)

where v is a positive constant.

Fractional Brownian Motion Synthesis Using the Command Line

According to the value of H, the fBm exhibits for H > 0.5, long-range dependence and for
H < 0.5, short or intermediate dependence.

Let us give an example of each situation using the wfbm file, which generates a sample
path of this process.

% Generate fBm for H = 0.3 and H = 0.7  
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% Set the parameter H and the sample length 

H = 0.3; lg = 1000; 

% Generate and plot wavelet-based fBm for H = 0.3

fBm03 = wfbm(H,lg,'plot');

% Generate and plot wavelet-based fBm for H = 0.7 

fBm07 = wfbm(H,lg,'plot');

% The last step is equivalent to 

% Define wavelet and level of decomposition

% w = ' db10'; ns = 6; 

% Generate 

% fBm07 = wfbm(H,lg,'plot',w,ns);

It appears that fBm07 clearly exhibits a stronger low-frequency component and has,
locally, a less irregular behavior.

Fractional Brownian Motion Synthesis Using the Graphical Interface

1 Start the Fractional Brownian Motion Synthesis Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears. Click Fractional Brownian
Generation 1-D to display the One-Dimensional Fractional Brownian Motion
Synthesis Tool.
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2 Generate fBm.



 One-Dimensional Fractional Brownian Motion Synthesis

2-51

From the Fractal Index edit button, type 0.3 and from the Seed frame, select the
item State and set the value to 0. Next, click the Generate button.

The synthesized signal exhibits a locally highly irregular behavior.
3 Now let us try another value for the fractal index. From the Fractal Index edit

button, type 0.7 and from the Seed frame, select the item State and set the value to
0. Next, click the Generate button.
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The synthesized signal clearly exhibits a stronger low-frequency component and has
locally a less irregular behavior. These properties can be investigated by clicking the
Statistics button.

Saving the Synthesized Signal

The Fractional Brownian Motion Synthesis Tool lets you save the synthesized signal to
disk. The toolbox creates a MAT-file in the current folder with a name you choose.

To save the synthesized signal from the present selection, use the option File > Save
Synthesized Signal. A dialog box appears that lets you specify a folder and filename for
storing the signal. After saving the signal data to the file fbm07.mat, load the variables
into workspace.

load fbm07 

whos

Name Size Bytes Class

FBM_PARAMS 1x1 668 struct array

fbm07 1x1000 8000 double array
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FBM_PARAMS

FBM_PARAMS =  

          SEED: [2x1 double] 

           Wav: 'db10'

        Length: 1000 

             H: 0.7000 

    Refinement: 6

The synthesized signal is given by fbm07. In addition, the parameters of the generation
are given by FBM_PARAMS, which is a cell array of length 5.
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New Wavelet for CWT

This section takes you through the features of New Wavelet for CWT, one of the Wavelet
Toolbox specialized tools.

The toolbox requires only one function to design a new wavelet adapted to a given
pattern for CWT: pat2cwav. You'll find full information about this function in its
reference page.

In this section, you'll learn how to

• Load a pattern
• Synthesize a new wavelet adapted to the given pattern
• Detect patterns by CWT using the adapted wavelet
• Compare the detection using both the adapted wavelet and well-known wavelets
• Save the synthesized wavelet

Since you can perform the design of the new wavelet for CWT either from the command
line or using the graphical interface tools, this section has subsections covering each
method.

The principle for designing a new wavelet for CWT is to approximate a given pattern
using least squares optimization under constraints leading to an admissible wavelet well
suited for the pattern detection using the continuous wavelet transform (see [MisMOP03]
in “References” on page 1-83).

New Wavelet for CWT Using the Command Line

The following example illustrates how to generate a new wavelet starting from a pattern.

% Load original pattern: a pseudo sine one. 

load ptpssin1;

% Variables X and Y contain the pattern. 

whos 

Name Size Bytes Class

IntVAL 1x1 8 double array
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Name Size Bytes Class

X 1x256 2048 double array

Y 1x256 2048 double array

caption 1x35 70 char array

IntVAL

IntVAL =  

    0.1592  

% The pattern on the interval [0,1] integrates to 0.1592. 

% So it is not a wavelet but it is a good candidate since it  

% oscillates like a wavelet. 

plot(X,Y), title('Original Pattern')

% To synthesize a new wavelet adapted to the given pattern, use 

% a least squares polynomial approximation of degree 6 with 

% constraints of continuity at the beginning and the end of the 

% pattern. 

[psi,xval,nc] = pat2cwav(Y, 'polynomial',6, 'continuous') ;  

% The new wavelet is given by xval and nc*psi. 

plot(X,Y,'-',xval,nc*psi,'--'),  

title('Original Pattern and Adapted Wavelet (dashed line)')
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% Let us notice that the version of the wavelet correctly  

% defined in order to be used in the CWT algorithm must be of 

% square norm equal to 1. It is simply given by xval and psi.

New Wavelet for CWT Using the Graphical Interface

1 Start the New Wavelet for CWT Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears. Click the New Wavelet for CWT
menu item to display the Pattern Adapted Admissible Wavelet Design Tool.
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.
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2 Load the original pattern.

The MAT-file defining the pattern can contain more than one variable. In that case,
the variable Y is considered if it exists; otherwise, the first variable is considered.

3 From the File menu, choose the Load Pattern option.

When the Load Pattern dialog box appears, select the MAT-file ptpssin1.mat,
which should reside in the MATLAB folder toolbox/wavelet/wavedemo. Click the
OK button.

The selected pattern denoted by F is defined on the interval [0,1] and is of integral
0.1592. It is not a wavelet, but it is a good candidate because it oscillates like a
wavelet.

4 Perform pattern approximation.

Accept the default parameters leading to use a polynomial of degree 3 with
constraints of continuity at the borders 0 and 1, to approximate the pattern F. Click
the Approximate button.
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After a pause for computation, the tool displays the new wavelet in green
superimposed with the original pattern in red.

The result is not really satisfactory. A solution is to increase the polynomial degree
to fit better the pattern.

5 Using the Polynomial Degree menu, increase the degree by selecting 6. Then click
the Approximate button again.
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The result is now of good quality and can be used for pattern detection.
6 Pattern detection using the new wavelet.

Click the Run button.

After a pause for computation, the tool displays the running signal and the pattern
detection by CWT using the adapted wavelet.
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The running signal is the superimposition of two dilated and translated versions of
the pattern F, namely F((t-20)/8) and F((t-40)/4). The two pairs (position,
scale) to be detected are given by (20,8) and (40,4) and are materialized by dashed
lines in the lower right graph of the contour plot of the CWT. The detection is perfect
because the two local maxima of the absolute values of the continuous wavelet
coefficients fit perfectly.

7 Using the Running signal frame, select the Noise check box to add an additive
noise to the previous signal. Click the Run button again.



2 Using Wavelets

2-62

The quality of the detection is not altered at all.
8 Compare the adapted wavelet and well-known wavelets.

Let us now compare the performance for pattern detection of the adapted wavelet
versus well-known wavelets. Click the Compare button. A new window appears.
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This tool displays the pattern detection performed with the adapted wavelet on the
left and db1 wavelet (default) on the right. The two positions are perfectly detected
in both cases but scales are slightly underestimated by the db1 wavelet.

The tool allows you to generate various running signals and choose the wavelet to be
compared with the adapted one.

Click the Close button to get back to the main window.

Saving the New Wavelet

The New Wavelet for CWT Tool lets you save the synthesized wavelet. The toolbox
creates a MAT-file in the current folder with a name you choose.

To save the new wavelet from the present selection, use the option File > Save Adapted
Wavelet. A dialog box appears that lets you specify a folder and filename for storing the
data. After you save the wavelet data to the file newwavel.mat, the adapted wavelet is
given by X and Y.
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Note that the version of the saved wavelet is correctly defined to be used in the CWT
algorithm and is such that its square norm is equal to 1.
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Wavelet Families and Properties

This example shows how to find and display information about available wavelets. The
Wavelet Toolbox software contains an extensive selection of the most commonly-used
wavelets and orthogonal and biorthogonal wavelet filters. You also have the ability to
add your own filters to the toolbox.

Determine the existing wavelet families. Display the wavelet family names in the
command window.

waveletfamilies('f')

Display the names of all available wavelets in each family.

waveletfamilies('a')

You can also use wavemngr to display the available wavelet families.

wavemngr('read')

Use the wavelet family short name to determine what analysis an existing wavelet
supports.

The wavelet family short name for the Daubechies extremal-phase wavelets is 'db'.

waveinfo('db')

Determine what analysis the Morlet wavelet supports. The wavelet family short name is
'morl'.

waveinfo('morl')

Use the Wavelet Toolbox interactive tool, wavemenu, to investigate wavelet families.

Almost anything you can do in the Wavelet Toolbox software at the command line, you
can accomplish in wavemenu.

To start the interactive tool, enter wavemenu at the command line.
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Click Wavelet Display. Select the db4 wavelet and click Display.
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Visualizing Wavelets, Wavelet Packets, and Wavelet Filters

This example shows how to use wfilters, wavefun, and wpfun to obtain the filters,
wavelet, or wavelet packets corresponding to a particular wavelet family. You can
visualize 2-D separable wavelets with wavefun2.

Obtain the decomposition (analysis) and reconstruction (synthesis) filters for the
biorthogonal spline wavelet filters with 3 vanishing moments in the reconstruction filter
and 5 vanishing moments in the decomposition filter.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');

subplot(221);

stem(LoD,'markerfacecolor',[0 0 1]); title('Lowpass Decomposition Filter');

subplot(222);

stem(LoR,'markerfacecolor',[0 0 1]); title('Lowpass Reconstruction Filter');

subplot(223);

stem(HiD,'markerfacecolor',[0 0 1]); title('Highpass Decomposition Filter');

subplot(224);

stem(HiR,'markerfacecolor',[0 0 1]); title('Highpass Reconstruction Filter');

Visualize the real-valued Morlet wavelet. There is no associated scaling function.

[psi,xval] = wavefun('morl');
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plot(xval,psi,'linewidth',2);

title('$\psi(x) = e^{-x^2/2} \cos{(5x)}$','Interpreter','latex',...

    'fontsize',14);

Obtain the first 4 wavelet packets for the Daubechies least-asymmetric wavelet with 4
vanishing moments, sym4.

[wpws,x] = wpfun('sym4',4,10);

for nn = 1:size(wpws,1)

    subplot(3,2,nn)

    plot(x,wpws(nn,:)); axis tight;

    title(['W',num2str(nn-1)]);

end
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Continuous Wavelet Analysis

This example shows how to perform time-frequency analysis using the continuous
wavelet transform (CWT). Continuous wavelet analysis provides a time-scale/time-
frequency analysis of signals and images. The Wavelet Toolbox software has both
command line and interactive functionality to support continuous wavelet analysis of 1-D
signals and 2-D images. To perform continuous wavelet analysis with the interactive tool,
enter wavemenu at the MATLAB command line and click one of the following choices:
Continuous Wavelet 1-D, Complex Continuous Wavelet 1-D, Continuous Wavelet
1-D (Using FFT), or Continuous Wavelet Transform 2-D.

Construct a signal consisting of two sinusoids with frequencies of 100 and 50 Hz. The
data is sampled at 1 kHz. The support of the two sinusoids is disjoint. The 100-Hz sine
wave begins at t=0 and has a duration of 1 second. The 50-Hz sinusoid begins at three
seconds and has a duration of two seconds.

Use the complex-valued (nonanalytic) Morlet wavelet, cmor1-1. To determine the scales
of interest, assume you are interested in the frequency region from 10 to 125 Hz. To
determine the range of scales corresponding to [10,125], use centfrq.

Fs = 1000;

fc = centfrq('cmor1-1');

% a = fc/(freq*dt)

freqrange = [20 150];

scalerange = fc./(freqrange*(1/Fs));

With your scales of interest, obtain a scalogram analysis.

t = linspace(0,5,5e3);

x = cos(2*pi*100*t).*(t<1)+cos(2*pi*50*t).*(3<t)+0.3*randn(size(t));

scales = scalerange(end):0.2:scalerange(1);

Coeffs = cwt(x,scales,'cmor1-1');

SCImg = wscalogram('image',Coeffs,'scales',scales,'ydata',x,'xdata',t);
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Continuous Wavelet Transform and Inverse Continuous Wavelet
Transform

This example shows how to use the discrete Fourier transform-based CWT and inverse
CWT.

CWT of Sine Waves and Impulses

Create and plot a signal consisting of two disjoint sine waves with frequencies of 100 and
50 Hz punctuated by two impulses. The sampling frequency is 1 kHz and the total signal
duration is one second. The 100-Hz sine wave occurs over the first 250 milliseconds of the
data. The 50-Hz sinusoid occurs over the last 500 milliseconds. The impulses occur at 650
and 750 milliseconds. The signal also has  additive white Gaussian noise. The
impulse at 650 milliseconds is visible, but the impulse at 750 milliseconds is not evident
in the time-domain data.

Fs = 1000;

t = 0:1/Fs:1-1/Fs;

x = zeros(size(t));

x([625,750]) = 2.5;

x = x+ cos(2*pi*100*t).*(t<0.25)+cos(2*pi*50*t).*(t>=0.5)+...

    0.15*randn(size(t));

plot(t,x)
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Construct a logarithmically-spaced (base 2) scale vector. This vector specifies the scales
over which to compute the CWT. Logarithmic spacing has a constant ratio between
successive elements. Use a ratio of  where 32 is the number of voices per octave, and
use 5 octaves. This produces the desired range of normalized scales, which is greater
than one and less than the length of the input signal.

numvoices = 32;

numoctaves = 5;

a0 = 2^(1/numvoices);

scales = a0.^(numvoices:1/numvoices:numvoices*numoctaves).*1/Fs;
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Obtain and plot the CWT using an inverse DFT algorithm with the cwtft. Use the
analytic Morlet wavelet with the Fourier factor (described on the cwtft reference page) to
obtain a more accurate scale-to-period conversion.

cwtstruct = cwtft({x,0.001},'Scales',scales,'Wavelet','morl');

periods = cwtstruct.scales.*(4*pi)/(6+sqrt(38));

freq  = 1./periods;

cfs = cwtstruct.cfs;

contour(t,freq,abs(cfs));

set(gca,'xtick',[0 0.25 0.4 0.5 0.6 0.75 1]); grid on;

xlabel('Time (seconds)'); ylabel('CWT coefficient Moduli');
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The CWT moduli correctly show the supports of the disjoint sinusoids and the locations
of the impulses at 650 and 750 milliseconds. In the CWT moduli, the impulse at 750
milliseconds is clearly visible.

Inverse CWT of Sine Wave

The DFT-based CWT enables you to approximate the inverse CWT. Using the
approximate inverse CWT lets you to construct scale- and time-localized approximations
to events in your time series. Use the inverse CWT to obtain a scale-localized
approximation to the 100-Hz sinusoid in the previous example.

The 100-Hz sine wave has a scale of 0.01 seconds, but the CWT analysis is not perfectly
localized at that scale. Choose scales from 0.007 to 0.014 seconds to accurately capture
the 100-Hz component. Copy the structure array, cwtstruct, from the continuous
wavelet analysis of the signal. Initialize a new CWT coefficient array of zeros and
extract the relevant scales from the original coefficient array. Reconstruct the signal
approximation based on those scales using icwtft.

indices = find(scales>=0.007 & scales<=0.014);

icwtsin = cwtstruct;

icwtsin.cfs = zeros(size(cwtstruct.cfs));

icwtsin.cfs(indices,:) = cwtstruct.cfs(indices,:);

xrec = icwtft(icwtsin);

plot(t,x);

hold on;

plot(t,xrec,'r');

set(gca,'xlim',[0 0.4]);

legend('Original Signal','Inverse CWT Approximation',...

    'Location','NorthEast');
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Critically-Sampled Discrete Wavelet Analysis

Wavelet Toolbox software enables you to analyze signals, images, and 3-D data using
orthogonal and biorthogonal critically-sampled discrete wavelet analysis. Critically-
sampled discrete wavelet analysis is also known as decimated discrete wavelet analysis.
Decimated discrete wavelet analysis is most appropriate for data compression, denoising,
and the sparse representation of certain classes of signals and images.

In decimated discrete wavelet analysis, the scales and translations are dyadic.

You can perform 1-D, 2-D, and 3-D decimated discrete wavelet analysis using the
interactive tool, wavemenu, by entering

wavemenu

at the command line and clicking Wavelet 1-D, Wavelet 2-D, or Wavelet 3-D.

1-D Wavelet Denoising

This example shows how to denoise a signal using discrete wavelet analysis.

Create a reference signal.

len = 2^11;

h = [4  -5  3  -4  5  -4.2   2.1   4.3  -3.1   5.1  -4.2];

t = [0.1  0.13  0.15  0.23  0.25  0.40  0.44  0.65  0.76  0.78  0.81];

h  = abs(h);

        w  = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];

        tt = linspace(0,1,len);  xref = zeros(1,len);

        for j=1:11

            xref = xref + ( h(j) ./ (1+ ((tt-t(j))/w(j)).^4));

        end
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Add zero-mean white Gaussian noise with a variance of 0.25.

rng default;

x = xref + 0.5*randn(size(xref));

plot(x); set(gca,'xlim',[1 2048]);
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Denoise the signal down to level 3 using the Daubechies least asymmetric wavelet with 4
vanishing moments. Use the universal threshold selection rule of Donoho and Johnstone
with soft thresholding based on the DWT coefficients at level 1. Use the periodization
signal extension mode — dwtmode('per'). Plot the result along with the reference
signal for comparision.

dwtmode('per');

[xd,cxd,lxd] = wden(x,'sqtwolog','s','sln',4,'sym4');

plot(xd);

set(gca,'xlim',[1 2048]); hold on;

plot(xref,'r');

2-D Decimated Discrete Wavelet Analysis

This example shows how to obtain the 2-D DWT of an input image.

Load and display the image. The image consists of vertical, horizontal, and diagonal
patterns.

load tartan;

imagesc(X); colormap(gray);
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Obtain the 2-D DWT at level 1 using the biorthogonal B-spline wavelet and scaling
filters with 2 vanishing moments in the analysis filters and 4 vanishing moments in the
synthesis filters. Extract the horizontal, vertical, and diagonal wavelet coefficients and
the approximation coefficients. Display the results.

[C,S] = wavedec2(X,1,'bior2.4');

[H,V,D] = detcoef2('all',C,S,1);

A = appcoef2(C,S,'bior2.4');

subplot(221);

imagesc(A); title('Approximation Level 1');

colormap(gray);

subplot(222);

imagesc(H); title('Horizontal Details');

subplot(223);

imagesc(V); title('Vertical Details');

subplot(224);

imagesc(D); title('Diagonal Details');
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You see that the wavelet details are sensitive to particular orientations in the input
image. The approximation coefficients are a lowpass approximation to the original image.
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Lifting

This example shows how to use lifting on a 1-D signal.

Create a 1-D signal that is piecewise constant over 2 samples. Add N(0,0.12) noise to the
signal.

x = [1 1 2 2 -3.5 -3.5 4.3 4.3 6 6 -4.5 -4.5 2.2 2.2 -1.5 -1.5];

x = repmat(x,1,64);

rng default;

x = x+ 0.1*randn(size(x));

Plot the signal and zoom in on the first 100 samples to visualize the correlation in
neighboring samples.

plot(x);

set(gca,'xlim',[0 100]);

Use the lazy wavelet to obtain the even and odd polyphase components of the signal.

LS = liftwave('lazy');

[A,D] = lwt(x,LS);

If you plot the detail (wavelet) coefficients in D, you see that this transform has not
decorrelated the signal. The wavelet coefficients look very much like the signal.
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Add a dual lifting step that subtracts the even-indexed coefficient from the odd-coefficient
one sample later, x(2n+1)-x(2n).

els = {'d',-1,0};

LSnew = addlift(LS,els);

Because the signal is piecewise constant over consecutive samples with additive noise,
the new dual lifting step should result in wavelet coefficients small in absolute value.
In this case, the wavelet transform does decorrelate the data. Verify this by finding the
approximation and detail coefficients with the new dual lifting step.

[A,D] = lwt(x,LSnew);

If you plot the detail (wavelet) coefficients, you see that the wavelet coefficients no longer
resemble the original signal.

The approximation coefficients, A, of the previous transform constitute the even
polyphase component of the signal. Therefore, the coefficients are affected by aliasing.
Use a primal lifting step to update the approximation coefficients and reduce aliasing.
The primal step replaces the approximation coefficients by x(2n)+1/2(x(2n+1)-x(2n)),
which is equal to the average of x(2n) and x(2n+1). The averaging is a lowpass filtering,
which helps to reduce aliasing.

els = {'p',1/2, 0};

LSnew = addlift(LSnew,els);

Use the updated lifting scheme to obtain the wavelet transform of the input signal.

[A,D] = lwt(x,LSnew);

Add the appropriate scaling to ensure perfect reconstruction. Obtain the approximation
and wavelet coefficients using lifting and reconstruct the signal using ilwt. Verify
perfect reconstruction.

LSnew(end,:) = {sqrt(2),sqrt(2)/2,[]};

[A,D] = lwt(x,LSnew);

x1 = ilwt(A,D,LSnew);

max(abs(x1-x))

The preceding example designed a wavelet, which effectively removed a zero-th order
polynomial (constant). If the behavior of the signal is better represented by a higher-
order polynomial, you can design a dual wavelet with the appropriate number of
vanishing moments to decorrelate the signal.
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Use the lifting scheme to design a wavelet with 2 vanishing moments. A dual wavelet
with 2 vanishing moments decorrelates a signal with local behavior approximated by a
first-order polynomial. Create a signal characterized by first-order polynomial behavior
with additive N(0,0.252) noise.

y = [1 0 0 4 0 0 -1 0 0 2 0 0 7 0 0 -4 0 0 1 0 0 -3];

x1 = 1:(21/1024):22-(21/1024);

y1 = interp1(1:22,y,x1,'linear');

rng default;

y1 = y1+0.25*randn(size(y1));

plot(x1,y1); set(gca,'xlim',[1 22]);

In this case, the wavelet coefficients should remove a first-order polynomial. If the signal
value at an odd index, x(2n+1), is well approximated by a first-order polynomial fitted to
the surrounding sample values, then 1/2(x(2n)+x(2n+2)) should provide a good fit for x(2n
+1). In other words, x(2n+1) should be the midpoint between x(2n) and x(2n+2).

It follows that x(2n+1)–1/2(x(2n)+x(2n+2)) should decorrelate the signal.

Start with the lazy wavelet transform and add a dual lifting step which models the
preceding equation.

LS = liftwave('lazy');

els = {'d',[-1/2 -1/2],1};
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LSnew = addlift(LS,els);

Use the lifting scheme to obtain the approximation and detail coefficients and plot the
result.

[A,D] = lwt(y1,LSnew);

subplot(211)

plot(A); set(gca,'xlim',[1 512]);

title('Approximation Coefficients');

subplot(212)

plot(D); set(gca,'xlim',[1 512]);

title('Detail Coefficients');

You see that the wavelet coefficients appear to only contain noise, while the
approximation coefficients represent a denoised version of the original signal. Because
the preceding transform uses only the even polyphase component for the approximation
coefficients, you can reduce aliasing by adding a primal lifting step. Finally, add the
normalization constants to produce a perfect reconstruction filter bank.

Obtain the discrete wavelet transform with the new lifting scheme and plot the results.

els = {'p',[1/4 1/4],0};

LSnew = addlift(LSnew,els);

LSnew(end,:) = {sqrt(2),sqrt(2)/2,[]};

[A,D] = lwt(y1,LSnew);

subplot(211)

plot(A); set(gca,'xlim',[1 512]);

title('Approximation Coefficients');

subplot(212)

plot(D); set(gca,'xlim',[1 512]);

title('Detail Coefficients');

Demonstrate that you have designed a perfect reconstruction filter bank.

y2 = ilwt(A,D,LSnew);

max(abs(y2-y1))
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Nondecimated Discrete Wavelet Analysis

This example shows how to obtain the nondecimated (stationary) wavelet transform of a
noisy frequency-modulated signal.

Load the noisy Doppler signal and obtain the stationary wavelet transform down to level
4.

load noisdopp;

swc = swt(noisdopp,4,'sym8');

Plot the original signal and the level 1 and 3 wavelet coefficients. Plot the level 4
approximation.

subplot(411)

plot(noisdopp);

subplot(412);

plot(swc(1,:)); ylabel('D1');

set(gca,'ytick',[]);

subplot(413)

plot(swc(3,:)); ylabel('D3');

set(gca,'ytick',[]);

subplot(414);

plot(swc(5,:)); ylabel('A4');

set(gca,'ytick',[]);
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The wavelet and approximation coefficients at each level are equal in length to the input
signal. The additive noise is almost entirely localized in the level one detail coefficients.
The level 3 details coefficients captures the high-frequency oscillations at the beginning
of the Doppler signal. The level 4 approximation coefficients are a lowpass approximation
to the Doppler signal.

Obtain the 2-D nondecimated wavelet transform of an image. Use the Daubechies least
asymmetric wavelet, sym4, and obtain the multiresolution analysis down to level 3. Load
the image. Use wcodemat to scale the matrix for display.

load tartan;

nbcol = size(map,1);

cod_X = wcodemat(X,nbcol);

Obtain the nondecimated multiresolution analysis down to level 3.

[ca,chd,cvd,cdd] = swt2(X,3,'sym4');

Display the original image and the approximation and detail coefficients at each level.

subplot(221)

image(cod_X)

title('Original image');

colormap(map)

for k = 1:3

    cod_ca  = wcodemat(ca(:,:,k),nbcol);

    cod_chd = wcodemat(chd(:,:,k),nbcol);

    cod_cvd = wcodemat(cvd(:,:,k),nbcol);

    cod_cdd = wcodemat(cdd(:,:,k),nbcol);

    decl = [cod_ca,cod_chd;cod_cvd,cod_cdd];

    subplot(2,2,k+1)

    image(decl)

    title(['SWT dec.: approx. ', ...

   'and det. coefs (lev. ',num2str(k),')']);

    colormap(gray)

end
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Critically Sampled Wavelet Packet Analysis

This example shows how to obtain the wavelet packet transform of a 1-D signal. The
example also demonstrates that frequency ordering is different from Paley ordering.

Create a signal consisting of a sine wave with a frequency of 7π/8 radians/sample in
additive white Gaussian N(0,1/4) noise. The sine wave occurs between samples 128 and
512 of the signal.

rng default;

dwtmode('per');

n = 0:1023;

indices = (n>127 & n<=512);

x = cos(7*pi/8*n).*indices+0.5*randn(size(n));

Obtain the wavelet packet transform down to level 2 using the Daubechies least
asymmetric wavelet with 4 vanishing moments. Plot the wavelet packet tree.

T = wpdec(x,2,'sym4');

plot(T);

Find the Paley and frequency ordering of the terminal nodes.

[tn_pal,tn_freq] = otnodes(T);

tn_freq contains the vector [3 4 6 5], which shows that the highest frequency
interval, [3π/4, π), is actually node 5 in the Paley-ordered wavelet packet tree.

Click on node (2,2) in the wavelet packet tree to see that the frequency ordering correctly
predicts the presence of the sine wave.
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The wavelet packet transform of a 2-D image yields a quarternary wavelet packet
tree. Load an example image. Use the biorthogonal B-spline wavelet with 3 vanishing
moments in the reconstruction wavelet and 5 vanishing moments in the decomposition
wavelet. Plot the resulting quartenary wavelet packet tree.

load tartan;

T = wpdec2(X,2,'bior3.5');

plot(T);


